- 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
phoenix@Capricornus
模式识别与机器学习均值算法机器学习算法
EM算法与K均值算法的关系K均值可以看成是高斯混合模型的特例。对K均值算法与EM算法进行比较后,可以发现它们之间有很大的相似性。K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。事实上,可以从EM算法推导出K均值算法。考虑一个高斯混合模型,其中混合分量的协方差矩阵由σ2I{\sigma^2}Iσ2I给出,其中σ2{\sig
- 详解3DGS
一碗姜汤
计算机视觉人工智能计算机视觉
4可微分的3D高斯splatting核心目标与表示选择我们的目标是从无法线的稀疏SfM点出发,优化出一种能够实现高质量新视角合成的场景表示。为此,我们选择3D高斯作为基本图元,它兼具可微分的体表示特性和非结构化的显式表示优势,既能支持优化过程,又能实现快速渲染。高斯参数与投影模型3D高斯定义高斯由世界空间中的均值(位置)μ\muμ和协方差矩阵∑\sum∑定义,其概率密度函数为:G(x)=e−12(
- 主成分分析(PCA)例题——给定协方差矩阵
phoenix@Capricornus
PR书稿矩阵线性代数
向量xxx的相关矩阵为Rx=[0.30.10.10.10.3−0.10.1−0.10.3]{\bmR}_x=\begin{bmatrix}0.3&0.1&0.1\\0.1&0.3&-0.1\\0.1&-0.1&0.3\end{bmatrix}Rx=0.30.10.10.10.3−0.10.1−0.10.3计算输入向量的KL变换。解答Rx{\bmR}_xRx的特征值为λ0=0.1\lambda_0=
- PCL 计算点云OBB包围盒——PCA主成分分析法
点云侠'
点云学习算法c++开发语言计算机视觉人工智能
目录一、概述1.1原理1.2实现步骤1.3应用场景1.4注意事项二、关键函数2.1头文件2.2读取点云2.3计算点云质心和协方差矩阵2.4协方差矩阵分解求特征值和特征向量2.5校正主方向2.6将输入点云转换至原点2.7计算包围盒2.8构建四元数和位移向量2.9结果可视化三、完整代码四、结果内容抄自CSDN点云侠:【2024最新版】PCL点云处理算法汇总(C++长期更新版)。质量无忧,永久免费,可放
- 机器学习——主成分分析 PCA
Nil0_
机器学习
目录简介一、基本原理1.数据变换2.协方差矩阵3.特征值和特征向量实施步骤应用选择主成分的数量二、代码实现优缺点分析优点缺点总结简介主成分分析(PCA)是机器学习领域中的一种重要算法,主要应用于数据的降维和特征提取。PCA的目的是通过保留数据集中的主要信息,将高维数据集转换为低维数据集,从而简化模型训练和提高模型性能。一、基本原理1.数据变换PCA通过线性变换将原始数据映射到新的特征空间,这个变换
- 基于Matlab实现LDA算法
Matlab仿真实验室
Matlab仿真实验1000例matlab算法开发语言
线性判别分析(LinearDiscriminantAnalysis,LDA)是一种经典的统计方法,常用于特征降维和分类问题。在机器学习领域,一、LDA基本原理LDA的目标是寻找一个投影空间,使得类间距离最大化,同时保持类内距离最小化。在这个新空间中,不同类别的样本能够得到更好的分离。LDA假设样本服从多变量正态分布,并且各类别的协方差矩阵相同。通过解决特定的优化问题,我们可以找到最优的投影向量。二
- 深度学习与传统算法在人脸识别领域的演进:从Eigenfaces到ArcFace
uncle_ll
人脸深度学习人脸人脸识别
一、传统人脸识别方法的发展与局限1.1Eigenfaces:主成分分析的经典实践算法原理Eigenfaces是基于主成分分析(PCA)的里程碑式方法。其核心思想是将人脸图像视为高维向量,通过协方差矩阵计算特征向量(即特征脸),将原始数据投影到由前k个最大特征值对应的特征向量张成的低维子空间。在FERET数据集上,Eigenfaces曾达到85%的识别准确率,证明了线性降维的有效性。优劣势对比✅优势
- 【MATLAB例程】线性卡尔曼滤波的程序,三维状态量和观测量,较为简单,可用于理解多维KF,附代码下载链接
MATLAB卡尔曼
卡尔曼专题免费专栏matlab开发语言
本文所述代码实现了一个三维状态的扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)算法。通过生成过程噪声和观测噪声,对真实状态进行滤波估计,同时对比了滤波前后状态量的误差和误差累积分布曲线。文章目录简介运行结果MATLAB源代码简介代码分为以下几个部分:初始化部分清理工作区环境,设置随机数种子,定义时间序列。定义过程噪声协方差矩阵Q和观测噪声协方差矩阵R。初始化真实状态矩阵X、观测
- 点云法向量和平面方程
Satisfying
数学基础算法人工智能智慧城市数学建模
文章目录一、平面方程表示法1.1一般方程1.2点法式1.3一般方程的系数构成法向量1.4结论二、拉格朗日乘数法三、法向量计算3.1问题背景3.2推导过程3.2.1证明法向量是一个特征向量3.2.2证明法向量是最小特征值对应的特征向量四、已知三点求平面方程表达式五、已知协方差矩阵计算法向量一、平面方程表示法1.1一般方程Ax+By+Cz+D=0Ax+By+Cz+D=0Ax+By+Cz+D=01.2点
- 【神经网络与深度学习】VAE 中的先验分布指的是什么
如果树上有叶子
神经网络与深度学习深度学习神经网络人工智能
VAE中的先验分布是什么?在变分自编码器(VAE)中,先验分布指的是对潜在空间中随机变量的概率分布假设。通常情况下,VAE设定潜在变量服从标准正态分布(N(0,I)),其中(0)代表均值为零的向量,(I)为单位协方差矩阵。选择标准正态分布作为先验分布的原因主要有以下几点:数学上的便利性:标准正态分布具有良好的数学性质,计算和推导更加简洁,便于模型的优化和训练。结构化的潜在空间:这种假设能够促使模型
- 【数据融合】基于拓展卡尔曼滤波实现雷达与红外的异步融合附matlab代码
Matlab建模攻城师
数据融合算法matlab数据融合
一、问题分析与技术难点1.传感器特性对比传感器测量维度优势局限性噪声模型雷达距离$r$、方位角$\theta$、速度$v$测距精度高、全天候工作角度分辨率低、易受多径干扰高斯噪声,协方差矩阵$R_r=\text{diag}(\sigma_r^2,\sigma_\theta^2,\sigma_v^2)$红外方位角$\theta$、俯仰角$\phi$、温度$T$测角精度高、隐蔽性强受天气影响大、无测距
- 【Python机器学习】零基础掌握OAS协方差估计
Mr数据杨
Python机器学习python机器学习开发语言
如何更准确地估算股市投资组合的风险?在股市投资中,风险估算是至关重要的。传统的协方差矩阵在某些情况下可能并不准确,特别是在数据样本量较小的情况下。那么,有没有更好的方法来进行风险估算呢?解决这一问题的一种算法就是sklearn.covariance.OAS(OracleApproximatingShrinkage)。这个算法能更准确地估算协方差矩阵,特别是在数据样本量较少的情况下。假设有一个投资者
- 机器学习(8)——主成分分析
追逐☞
机器学习机器学习信息可视化人工智能
文章目录1.主成分分析介绍2.核心思想3.数学基础4.算法步骤4.1.数据标准化:4.2.计算协方差矩阵:4.3.特征分解:4.4.选择主成分:4.5降维:5.关键参数6.优缺点7.改进变种8.应用场景9.Python示例10.数学推导(最大化方差)11.注意事项12.总结1.主成分分析介绍主成分分析(PCA,PrincipalComponentAnalysis)是一种常用的降维技术,旨在通过线性
- 零碎的知识点(十九):协方差与协方差矩阵:从入门到精通,彻底掌握数据关系的数学本质
墨绿色的摆渡人
零碎知识点矩阵人工智能线性代数
协方差与协方差矩阵:从入门到精通,彻底掌握数据关系的数学本质协方差与协方差矩阵:从入门到精通,彻底掌握数据关系的数学本质一、协方差(Covariance):数据关系的“温度计”1.1什么是协方差?——生活中的类比1.2协方差的数学本质:分步拆解1.3协方差的三大特性1.4协方差的致命缺陷与解决方案二、协方差矩阵(CovarianceMatrix):多元关系的“交响乐团”2.1协方差矩阵的定义与结构
- 深入理解主成分分析(PCA):原理、算法与应用
青橘MATLAB学习
机器学习基础算法主成分分析降维协方差矩阵特征值分解
内容摘要本文深入剖析主成分分析(PCA)技术。介绍其通过正交变换简化数据维度的核心原理,详细推导基于最小投影距离和最大投影方差的算法过程,总结算法流程步骤。全面分析PCA的优缺点,并对比其与KPCA的差异。同时阐述降维的必要性和目的,助力读者系统掌握PCA技术及其在数据处理中的应用。关键词:主成分分析;降维;协方差矩阵;特征值分解一、引言在机器学习和数据处理领域,数据的高维度常常带来诸多挑战,如计
- 3DGS中的光栅化渲染过程(结合代码)
蓝羽飞鸟
DeepLearning3d计算机视觉人工智能
渲染过程主要是把3DGS投影到2D图像平面上。3DGS中每个高斯由位置(均值)、协方差矩阵(描述形状和方向)和不透明度(alpha)表示。投影到2D包括投影均值的位置,和投影协方差矩阵。另外介绍一下快速光栅化,为了提高效率,将屏幕划分为16x16像素的块(tiles)。每个3D高斯可能与多个块重叠,因此需要在这些块中实例化。使用GPU上的Radix排序算法对所有实例化的高斯进行排序,主要依据它们的
- 如何判断多个点组成的3维面不是平的,如果不是平的,如何拆分成多个平面
东北豆子哥
CFD/OpenFOAM线性代数
判断和拆分三维非平面为多个平面要判断多个三维点组成的面是否为平面,以及如何将非平面拆分为多个平面,可以按照以下步骤进行:判断是否为平面平面方程法:选择三个不共线的点计算平面方程:Ax+By+Cz+D=0检查其他所有点是否满足该方程(允许一定的误差范围)如果所有点都满足,则为平面;否则为非平面最小二乘法拟合平面:计算所有点的质心(平均x,y,z)构建协方差矩阵计算最小特征值对应的特征向量即为平面法向
- 3dgs通俗讲解
whuzhang16
3d
3dgaussiansplatting:基于splatting和机器学习的三维重建方法。特点:无深度学习简单的机器学习大量的CG知识复杂的线性代数对GPU的高性能编程一、什么是splatting1、选择“雪球”;为什么使用核(雪球)各向同性:在所有方向具有相同的扩散梯度(球);各向异性:在不同方向具有不同的扩散程度(椭球);通过协方差矩阵可以确定椭球,协方差矩阵可以用旋转和缩放矩阵表达。2、抛掷“
- SVD 算法
G_Water_
算法
SVD算法1.基本概念与背景2.SVD的数学基础3.SVD的步骤4.SVD的应用场景5.SVD的优点6.SVD的局限7.实现SVD的步骤1.导入必要的库:2.读取数据并计算协方差矩阵:3.求解特征值和奇异向量:4.构造U、Σ和VTV^{T}VT矩阵:5.应用SVD进行降维或去噪:8.示例:文本降维01.计算协方差矩阵:02.求解SVD03.构造U和VTV^{T}VT:04.矩阵分解与重建:05.应
- numpy版本踩坑总结 持续更新
AI算法网奇
python宝典python基础numpy
目录1.23版本报错module'numpy'hasnoattribute'bool'.协方差矩阵第2次优化:1.23版本影响库smplx报错module'numpy'hasnoattribute'bool'.解决方法:pipinstallnumpy==1.23.2测试版本命令:python-c"importnumpyasnp;print(np.__version__)"
- 基于PCA+RF的数据分类模型含matlab代码(PCA降维后输入进RF模型)
Jason_Orton
分类matlab算法人工智能机器学习随机森林
本代码实现了对高维数据通过PCA进行降维后,再输入到RF模型中去,从而提高模型精度的目的。代码中都有详细的注释,直接替换数据就可以使用。一.概述1.主成分分析(PCA)目的:降维,减少数据的维度,同时保留尽可能多的原始数据的方差。步骤:标准化数据:为了使每个特征对总的方差贡献相似,通常需要对数据进行标准化处理。计算协方差矩阵:确定数据集中特征之间的协方差。计算特征值和特征向量:从协方差矩阵中提取特
- MATLAB基础应用精讲-【数模应用】主成分(pca)分析(附python代码实现)
林聪木
matlab人工智能大数据
目录前言知识储备降维概述算法原理什么是PCAPCA降维过程PCA算法数学步骤选择主成分个数(即k的值)sklearn中参数的解释数学模型协方差协方差矩阵编辑编辑原理推导编辑编辑编辑编辑实际操作主成分分析的计算方法方法1.协方差+特征值分解方法2:奇异值分解对比不同方法计算效率物理意义算法步骤SPSSAU主成分(pca)分析说明1、信息浓缩2、权重计算3、综合得分【综合竞争力】疑难解惑成分得分后用于
- ALOAM代码解析laserMapping(二)
大山同学
代码解析SLAM感知定位
文章目录前言1.计算当前帧位置的IJK坐标2.与地图特征点与线段拟合及残差计算2.1.变换点云坐标系2.2.寻找最近邻点2.3.计算最近邻点的中心2.4.计算协方差矩阵2.5.特征值与特征向量分析2.6.判断是否为线特征2.7.添加残差函数3.点到平面拟合与残差计算(LidarPlaneNormFactor)3.1.变换点云坐标系3.2.寻找最近邻点3.3.最小二乘法拟合平面3.4.归一化法向量3
- 主成成分分析——MATLAB实现
前排观众_
课程分享matlab开发语言经验分享机器学习
主代码:%下面为主要成分分析的程序clear;clc;loadA;%要分析的数据A_aver=mean(A);A_bzc=std(A,0,1);A=(A-A_aver)./A_bzc;%将矩阵A标准化A_xfc=cov(A);%求出A的协方差矩阵[COEFF,latent,explained]=pcacov(A_xfc);zcf=find(latent>1)';%找到特征值大于1的成分以作为我们的
- OpenCV每日函数 图像过滤模块 (3) boxFilter函数
坐望云起
深度学习从入门到精通OpenCV从入门到精通opencv计算机视觉人工智能
一、概述使用箱形滤镜模糊图像,该函数使用内核平滑图像:其中非归一化箱形滤波器可用于计算每个像素邻域上的各种积分特征,例如图像导数的协方差矩阵(用于密集光流算法等)。如果您需要计算可变大小窗口上的像素和,请使用积分图。二、boxFilter函数1、函数原型cv::boxFilter(InputArraysrc,OutputArraydst,intddepth,Sizeksize,Pointancho
- 理解都远正态分布中指数项的精度矩阵(协方差逆矩阵)
curemoon
矩阵算法人工智能
之前一直不是很理解这个公式为什么用这个精度矩阵,为什么这么巧合,为什么是它,百思不得其解,最近有了一些新的理解:1.这个精度矩阵相对公平合理的用统一的方式衡量了变量间的关系,但是如果是公平合理的衡量变量间的关系,那么协方差本身就可以,那为什么又不是协方差矩阵,而是协方差矩阵的逆呢?看第二点。2.精度矩阵表征了变量之间的条件独立性,协方差矩阵是一个整体相关性的度量,比协方差矩阵更好的衡量了变量之间的
- 【Paddle】PCA线性代数基础 + 领域应用:人脸识别算法(1.1w字超详细:附公式、代码)
是Yu欸
数学建模数据挖掘Paddlepaddle线性代数python机器学习人工智能人脸识别数学建模
【Paddle】PCA线性代数基础及领域应用写在最前面一、PCA线性代数基础1.PCA的算法原理2.PCA的线性代数基础2.1标准差StandardDeviation2.2方差Variance2.3协方差Covariance2.4协方差矩阵TheCovarianceMatrix2.5paddle代码demo①:计算协方差矩阵2.6特征向量Eigenvectors标准化处理2.7paddle代码de
- MATLAB主成分分析实战指南
Ready-Player
本文还有配套的精品资源,点击获取简介:主成分分析(PCA)是数据降维的一种技术,它通过转换原始数据到线性无关的主成分,降低数据复杂性,同时尽可能保留原始数据的方差信息。MATLAB提供强大的矩阵运算功能和内置函数,便于实现PCA。本文将详细介绍如何使用MATLAB进行PCA的每个步骤,包括数据预处理、计算协方差矩阵、提取特征向量和特征值、选择主成分、数据转换、结果可视化以及从主成分恢复原始数据。P
- 多元随机分布的协方差矩阵的计算(python示例)
读思辨
Python数学矩阵python线性代数
协方差矩阵是统计学中描述两个或多个随机变量之间线性相关程度的一个重要工具。对于一个kkk维随机向量X=(X1,X2,...,Xk)X=(X_1,X_2,...,X_k)X=(X1,X2,...,Xk),其协方差矩阵是一个k×kk\timeskk×k的矩阵,其中每个元素σij\sigma_{ij}σij是随机变量XiX_iXi和XjX_jXj的协方差。协方差的计算公式为:σij=Cov(Xi,Xj)
- 9. 马科维茨资产组合模型+FF5+GARCH风险模型优化方案(理论+Python实战)
AI量金术师
金融资产组合模型进化论python开发语言金融人工智能机器学习算法
目录0.承前1.核心风险函数代码讲解1.1数据准备和初始化1.2单资产GARCH建模1.3模型拟合和波动率预测1.4异常处理机制1.5相关系数矩阵计算1.6构建波动率矩阵1.7计算协方差矩阵1.8确保矩阵对称性1.9确保矩阵半正定性1.10格式转换和返回1.11calculate_covariance_matrix函数汇总2.代码汇总3.反思3.1不足之处3.2提升思路4.启后0.承前本篇博文是对
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p