- 数模原理精解【8】
叶绿先锋
基础数学与应用数学人工智能统计分析概率论数学建模
文章目录协方差概述协方差的定义协方差的计算协方差的例子协方差矩阵协方差矩阵定义协方差矩阵的性质协方差矩阵的计算协方差矩阵的例子协方差矩阵的例题多元正态分布基础多元正态分布密度函数多元正态分布密度函数Julia实现详细解释定义计算例子例题参考文献协方差概述协方差是一种统计度量,用于描述两个变量之间的线性相关程度以及它们变化的趋势是否一致。具体来说,协方差计算的是两个变量同时偏离其均值的程度。如果两个
- 3D 场景模拟 2D 碰撞玩法的方案
长脖鹿Johnny
数学算法3d游戏游戏引擎算法几何学
目录方法概述顶点到平面的垂直投影求解最小降维OBB主成分分析(PCA)协方差矩阵求矩阵特征值Jacobi方法OBB拉伸方法对于类似《密特罗德生存恐惧》和《暗影火炬城》这样3D场景,但玩法还是2D卷轴动作平台跳跃(类银河恶魔城)的游戏,如果想要让碰撞检测更符合视觉直觉,需要采用3D碰撞体来模拟2D碰撞。本文将介绍一种实现方案。方法概述为了简化碰撞计算,原碰撞体(如武器的碰撞)只使用长方体(OBB)和
- Fréchet Inception Distance(FID)原理
代维7
生成式模型计算机视觉
原理概述:FID的核心思想是通过比较真实图像和生成图像在Inception模型特征空间中的分布差异,来评估生成模型的性能。它假设从真实数据和生成数据中提取的特征都近似服从高斯分布。具体步骤:特征提取:使用预训练的Inception模型分别对真实图像和生成图像进行处理,得到各自的特征向量。计算均值和协方差:对于真实图像的特征向量集合,计算其均值向量μreal\mu_{real}μreal和协方差矩阵
- 计算机视觉之 GSoP 注意力模块
Midsummer-逐梦
计算机视觉(CV)深度学习机器学习人工智能
计算机视觉之GSoP注意力模块一、简介GSopBlock是一个自定义的神经网络模块,主要用于实现GSoP(GlobalSecond-orderPooling)注意力机制。GSoP注意力机制通过计算输入特征的协方差矩阵,捕捉全局二阶统计信息,从而增强模型的表达能力。原论文:《GlobalSecond-orderPoolingConvolutionalNetworks(arxiv.org)》二、语法和
- PCL 点云ISS关键点提取算法
自动驾驶探索站
C++点云处理基础教程PCL特征提取关键点提取
目录一、概述二、代码示例三、运行结果结果预览接上篇Python点云ISS关键点提取算法一、概述点云ISS关键点(IntrinsicShapeSignatures):利用点云中每个点的局部邻域的协方差矩阵来分析局部几何结构。协方差矩阵的特征值可以揭示局部几何形状的显著性。通过筛选出特征值之间具有显著差异的点,ISS算法能够识别出关键点。参考文献:《IntrinsicShapeSignatures:A
- python绘制二维正态分布概率密度图(2d,3d)
马鹿91
pythonnumpy
importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.statsimportmultivariate_normal#定义均值和协方差矩阵mean=np.array([0,0])covariance=np.array([[1,0.5],[0.5,1]])#创建一个网格x,y=np.meshgrid(np.linspace(-3,3,500),np.
- 每天一个数据分析题(四百九十)- 主成分分析与因子分析
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
在主成分分析中,主成分的选择通常是按照()的大小排序来进行的。A.特征值B.特征向量C.协方差矩阵D.相关系数矩阵数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- python可以构建sem模型_结构方程模型(SEM)可用于微生态研究及R语言实现
weixin_39650139
python可以构建sem模型
导读结构方程模型(StructuralEquationModeling,SEM)是一种能基于变量之间的协方差矩阵分析多变量之间结构关系的多元统计分析方法,也被称为协方差结构模型。该方法是因子分析和多元回归分析的结合,可用于分析被测变量与潜在变量之间的结构关系,替代多重回归、通径分析、因子分析、协方差分析等分析方法。结构方程模型能在一次分析中估计多个相互关联的变量之间的依赖关系而受到研究者的青睐。早
- 概率论自复习思路
Miracle Fan
概率论
概率论复习思路(存在纰漏)文章目录概率论复习思路(存在纰漏)基本概念随机变量分布多维随机变量分布离散型连续性数字特征数学期望方差协方差系数矩、协方差矩阵大数定律抽样分布、估计、假设检验参数估计区间估计假设检验基本概念样本空间,和事件、差事件两个事件的关系:相不相容、是不是对立、两者之间的关系(ρ\rhoρ相关系数只反映线性方面,还可能存在非线性关系)事件发生的概率和发生关系:比如概率为0不一定代表
- 正定矩阵与半正定矩阵
方天一
矩阵
目录1.基本定义2.正定矩阵和半正定矩阵的直观理解3.协方差矩阵是半正定矩阵3.1分量形式证明:3.2整体形式证明:4.写在最后1.基本定义正定和半正定这两个词的英文分别为positivedefinite和positivesemi-definite。在考虑矩阵由实数构成的前提下,正定矩阵和半正定矩阵的定义如下:【定义1】给定一个大小为n×n的实对称矩阵A,若对于任意长度为n的非零行向量x,有恒成立
- 【3DGS】从新视角合成到3D Gaussian Splatting
UnderTurrets
图形渲染计算机视觉3d
文章目录引言:什么是新视角合成任务定义一般步骤NeRF的做法NeRF的三维重建NeRF的渲染3DGS的三维重建从一组图片估计点云高斯点云模型球谐函数参数优化损失函数和协方差矩阵的优化高斯点的数量控制(AdaptiveDensityControl)新的问题3DGS的渲染:快速可微光栅化3DGS的限制引言:什么是新视角合成任务定义新视角合成(NovelViewSynthesis),属于计算机视觉领域,
- 【数学和算法】SVD奇异值分解原理、以及在PCA中的运用
Mister Zhu
数学和算法数学
详细的介绍请参考这篇博客:SVD奇异值分解SVD奇异值分解是用来对矩阵进行分解,并不是专门用来求解特征值和特征向量。而求解特征值和求解特征向量,可以选择使用SVD算法进行矩阵分解后,再用矩阵分解后的结果得到特征值和特征向量。我们先回顾一下SVD:PCA降维需要求解协方差矩阵的特征值和特征向量,而求解协方差矩阵1m∗X∗XT\color{blue}\frac{1}{m}*X*X^Tm1∗X∗XT的特
- 卡尔曼滤波、马尔科夫模型、粒子滤波、TSP问题知识点回顾
竹叶青lvye
程序员的数学卡尔曼滤波隐马尔可夫模型动态规划粒子滤波
前面有小结了概率论、线性代数、现代控制理论的一些知识点,这边再来回顾下之前看过了关于卡尔曼滤波、马尔科夫模型、粒子滤波、动态规划中的TSP问题,这边也只是知其形,便于日后应用到一些实际案例中。一.卡尔曼滤波这边只是记录要点,便于快速回忆起来,可以从如下5个公式来入手。所以在代码初始化的时候要先初始化状态真实值和后验误差协方差矩阵主要可参考博客一文看懂卡尔曼滤波(附全网最详细公式推导)-知乎其它博客
- 12.1 主成分分析原理(PCA)
YANQ662
人工智能算法
主成分分析步骤如下:设有条维数据1.将原始数据按列组成行列矩阵;2.将矩阵的每一行进行零均值化;3.求出协方差矩阵;4.求出协方差矩阵的特征值及对应的特征向量;5.将特征向量按对应特征值大小从上到下按行排列成矩阵,取前行组成矩阵;6.即为降维到维后的数据。如果对线性代数的实对成矩阵的相似对角化熟悉的人可以很好的了解上面的步骤,根据线性代数的求解步骤如下(也可以是代码步骤,python的np有求解方
- EEG处理方法与技巧(随时更新)
有点傻的小可爱
前端javascripthtml
科研,思想(道)是首位,其次才是方法(手段)。在思想和方法都还欠缺的时候,一定要保持冷静和清醒,一步一步来。从简单的方法入手吧。一、使用Brainstorm进行EEG源定位导入数据后,源定位流程:脑电电极定位->计算头模->源估计->源分析(1)脑电电极定位,选择标准后,记得查看电极位置;(2)计算头模,这步时间比较长。计算完头模,一般数据已经进行过预处理,所以不进行噪声协方差矩阵的计算。(3)进
- 多元高斯分布:条件分布推导
DoYoungExplorer
导航算法及滤波机器学习人工智能算法
在概率统计学中,多元高斯分布是一种非常重要的分布,其条件分布的推导在实际问题中有广泛的应用。本文将详细探讨给定部分变量条件下,多元高斯分布中另一部分变量的条件分布的推导过程。1.多元高斯分布回顾首先,我们回顾一下多元高斯分布的基本形式:其中,Xa和Xb是随机向量的两个部分,μ是均值向量,Σ是协方差矩阵。均值向量:协方差矩阵:此外,使用协方差矩阵的逆矩阵也比较方便,即精度矩阵从而引入精度矩阵2.条件
- 特征脸的人脸识别MATLAB程序(附完整代码和结果)
MATLAB代码顾问
计算机视觉人工智能深度学习matlab
基于特征脸的人脸识别主体流程为:1.读取训练数据和预处理:读取脸的图片数据后,将每个人脸转换为一个列向量,训练集人脸构成一个矩阵A。2.求平均脸:对每一行都求平均值,得到一个列向量,我们称之为“平均脸”,是所有人脸的平均。3.样本规范化:矩阵A的每一个脸都减去平均脸乘以标准差。4.求特征脸:提高A的协方差矩阵C,再求C的特征向量。每一个特征向量就是“特征脸”。特点:也即原始的人脸都可表为特征脸的线
- 主成分分析\2.28
浅墨\
数学建模数据分析
主成分分析(PCA)一、概念主成分分析是一种数学降维方法,将原来众多具有关联性变量重新组合为一组新的相互间无关系的综合变量来代替原来的变量。二、用途及分类主成分分析用于缩小问题变量个数,减小解决问题的难度。通过PCA可计算出各个变量对于问题的重要程度(贡献率)。目前主要有两种方法。一种是基于特征值分解协方差矩阵,另一种是根据SVD分解协方差矩阵。三、特征值分解协方差矩阵的步骤这里以特征值分解协方差
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-3+4
LiongLoure
运动学与动力学学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-3+43.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.Priori/PosterrorierrorCovarianceMartix误差协方差矩阵3.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch051.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMatrix协方差矩阵StateSpace状态空间方程Observation观测器3.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.Priori/
- 3DGS 其一:3D Gaussian Splatting for Real-Time Radiance Field Rendering
泠山
#NeRF3dnerf神经网络3DGS
3DGS其一:3DGaussianSplattingforReal-TimeRadianceFieldRendering1.预备知识1.1球谐函数1.2Splatting1.3α\alphaαblending1.4多维高斯的协方差矩阵1.4.1高斯与椭球体的关系1.4.2世界坐标系下的三维高斯到二维像素平面投影过程2.3DGaussianSplatting2.1特点2.2流程与关键步骤2.2.1场
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-1+2
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-1+21.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMatrix协方差矩阵StateSpace状态空间方程Observation观测器1.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMa
- 协方差自适应调整的进化策略(CMA-ES)转载自知乎——补充
小唐要努力
算法CMAES协方差自适应调整进化策略
之前转载的原文好像挂了,于是在知乎上又找了一篇相关的文章,原文链接为:https://zhuanlan.zhihu.com/p/150946035本文仅作个人学习用,若有侵权请联系删除目录什么是进化策略简单高斯进化策略协方差自适应进化策略基本原理更新均值控制步长自适应协方差矩阵本文翻译自:https://lilianweng.github.io/lil-log/2019/09/05/evoluti
- 【智能优化算法】协方差矩阵自适应进化算法CMAES附matlab代码
前程算法matlab屋
算法矩阵matlab线性代数开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。内容介绍智能优化算法在解决复杂问题和优化函数方面发挥着重要作用。其中,协方差矩阵自适应进化算法(CovarianceMatrixAdaptationEvolutionStrategy,简称CMA-ES)是一种高效的优化算法。本文将详细介绍CMA-ES算法
- 基于协方差矩阵自适应演化策略(CMA-ES)的高效特征选择
deephub
机器学习特征选择python人工智能深度学习
特征选择是指从原始特征集中选择一部分特征,以提高模型性能、减少计算开销或改善模型的解释性。特征选择的目标是找到对目标变量预测最具信息量的特征,同时减少不必要的特征。这有助于防止过拟合、提高模型的泛化能力,并且可以减少训练和推理的计算成本。如果特征N的数量很小,那么穷举搜索可能是可行的:比如说尝试所有可能的特征组合,只保留成本/目标函数最小的那一个。但是如果N很大,那么穷举搜索肯定是不可能的。因为对
- 协方差矩阵自适应调整的进化策略(CMA-ES)
努力发光的程序媛
CMA-ES黑盒优化协方差矩阵自适应
关于CMA-ES,其中CMA为协方差矩阵自适应(CovarianceMatrixAdaptation),而进化策略(Evolutionstrategies,ES)是一种无梯度随机优化算法。CMA-ES是一种随机或随机化方法,用于非线性、非凸函数的实参数(连续域)优化。作者NikolausHansen于2016年在MachineLearning上发布了关于CMA-ES详细教学。原文链接:TheCMA
- R语言机器学习与临床预测模型30--主成分分析(PCA)
科研私家菜
本内容为【科研私家菜】R语言机器学习与临床预测模型系列课程R小盐准备介绍R语言机器学习与预测模型的学习笔记你想要的R语言学习资料都在这里,快来收藏关注【科研私家菜】01基础知识介绍方差:用来衡量随机变量与其数学期望(均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。协方差:度量两个随机变量关系的统计量,协方差为0的两个随机变量是不相关的。协方差矩阵:在统
- Kalman_Filter卡尔曼滤波器计算,陀螺仪卡尔曼滤波角度估算及代码
LuDvei
STM32嵌入式硬件智能硬件单片机硬件工程stm32mcu
目录1.向量轴的空间角度角度计算2.正态分布3.方差、协方差4.卡尔曼公式计算4.1状态空间方程4.2协方差矩阵4.3卡尔曼增益4.4状态更新方程4.5协方差更新方程5.陀螺仪卡尔曼滤波完整代码1.向量轴的空间角度角度计算以横滚角为例,X轴旋转需要一个初始角度,Y、Z轴都会跟随X轴旋转而转动,我们认为Y轴平行于水平面时,横滚角Roll的角度为0。从X轴观测,假设Y轴由水平面转动θ角度,则:accY
- 主成分分析(PCA)
fallinmix
PCA算法的主要步骤是:(1)对向量X进行去中心化(2)计算向量X的协方差矩阵,自由度可以选择0或1(3)计算协方差矩阵的特征值和特征向量(4)选取最大的k个特征值及其特征向量(5)用X与特征向量相乘python实现:fromsklearn.datasetsimportload_irisimportnumpyasnpdefpca(X,k):X=X-X.mean(axis=0)X_cov=np.co
- 6.【自动驾驶与机器人中的SLAM技术】鲁邦核函数的含义和应用
宛如新生
SLAM学习自动驾驶机器人人工智能
目录1.给ICP和NDT配准添加柯西核函数1.1代码实现2.将第1部分的robustloss引入IncNDTLO和LooselyLIO,给出实现和运行效果3.从概率层面解释NDT残差和协方差矩阵的关系,说明为什么NDT协方差矩阵可以用于最小二乘4.为LOAMlikeLO设计一个地面点云提取流程,并单独为这些点使用点面ICP4.1代码实现4.2对地面点进行ICP5.也欢迎大家来我的微信公众号--过千
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p