如何在海量数据中判断某条记录是否存在-布隆过滤器的使用(JDK版和Redis版)

场景

  • 爬虫时判断某个URL是否已经被爬取过
  • 黑名单过滤
  • 防止缓存穿透
  • ...

实现原理

定义一个长度为m的bit型数组flag[] (用来添加元素以及判断元素是否存在,因为Integer的最大值为2147483647,所以m取该值即可)
定义n个不同的hash函数(在添加元素时,需要设置flag[]哪些位为1; 在判断元素是否存在时,需要取flag[]哪些位来判断)
添加某个元素时,通过n个hash函数算出该元素的n个hash值(整型值),把flag[]对应的位置1
判断某个元素是否存在时,通过n个hash函数算出该元素的n个hash值(整型值),在flag[]取出对应的值,只要有一个不为1 ,即可判断为不存在.否则就任务元素存在

布隆过滤器优缺点

优点: 大大节省空间

场景: 在10亿数据中判断某个数据是否存在
如果使用HashSet/HashMap来实现的话
查找的时间复杂度是O(1),但是我们来算一下存储空间,Hash值为Integer类型,占四个字节,那10亿条数据占用的空间就是:10亿*4/1024/1024/1024约等于3.7G......这个实现方案很明显不现实
如果使用布隆过滤器实现
占用的空间大约为2147483647/8/1024/1024=256M

缺点: 误差

由上面的分析可知, hash函数是存在hash冲突的, 所以布隆过滤器是会有误判的情况.
表现为:

如果某条记录被判断为不存在,则该记录必然不存在
如果某条记录被判断存在,则该记录可能会不存在

代码实现

JDK版

public class BloomFilterDemo {

    private static final int insertions = 1000000;

    @Test
    public void bfTest1(){
        //初始化一个存储string数据的布隆过滤器,初始化大小100w,不能设置为0
        BloomFilter bf = BloomFilter.create(Funnels.stringFunnel(Charsets.UTF_8), insertions,0.001);
        //初始化一个存储string数据的set,初始化大小100w
        Set sets = new HashSet<>(insertions);
        //初始化一个存储string数据的set,初始化大小100w
        List lists = new ArrayList<>(insertions);

        //向三个容器初始化100万个随机并且唯一的字符串---初始化操作
        for (int i = 0; i < insertions; i++) {
            String uuid = UUID.randomUUID().toString();
            bf.put(uuid);
            sets.add(uuid);
            lists.add(uuid);
        }
        //布隆过滤器错误判断的次数
        int wrong = 0;
        //布隆过滤器正确判断的次数
        int right = 0;
        for (int i = 0; i < 10000; i++) {
            //按照一定比例选择bf中肯定存在的字符串
            String test = i%100==0?lists.get(i/100):UUID.randomUUID().toString();
            if(bf.mightContain(test)){
                if(sets.contains(test)){
                    right ++;
                }else{
                    wrong ++;
                }
            }
        }

        //100
        System.out.println("=================right====================="+right);
        System.out.println("=================wrong====================="+wrong);
    }

    @Test
    public void bfTest2() {
        //预计要插入多少数据
        int size = 1000000;
        //期望的误判率
        double fpp = 0.01;
        BloomFilter bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size, fpp);
        //插入数据
        for (int i = 0; i < 1000000; i++) {
            bloomFilter.put(i);
        }
        int count = 0;
        for (int i = 0; i < 1000000; i++) {
            if (!bloomFilter.mightContain(i)) {
                count++;
                System.out.println(i + "误判了");
            }
        }
        for (int i = 1000000; i < 2000000; i++) {
            if (bloomFilter.mightContain(i)) {
                count++;
                System.out.println(i + "误判了");
            }
        }
        System.out.println("总共的误判数:" + count);

    }

}

redis版

/**
 *
 * 原理是和 JDK 自带的BloomFilter类似的,我们看add方法,它先 Redis 缓存中是否有指定 key(如:orderBloomFilter) 的值,如果没有,则在 offset = 0 处,添加一个值为false,即为 0;
 * 然后调用createHashes(byte[] data, int hashes)方法,根据字节数组的内容生成digest,并将结果分割成 4 字节的整数并存储在数组中,数组中的整数可以理解为每次hash所得的hashcode的值。
 * 最后,遍历hashcode数组,将hashcode%sizeOfBloomFilter取模所得下标所对应的值设为true,即为 1。
 *
 * contains方法,同样调用createHashes(byte[] data, int hashes)得到字节数组内容所对应的hashcode数组。
 * 遍历hashcode数组,如果有一个hashcode所对应的下标的值不为1,则该数据不存在。反之,只有所有的hashcode所对应的下标的值都为1,才能说明该数据已经存在。
 *
 * @author: ZENGQINGXUN178
 * @Date: 2019-8-27 10:30
 * @Description:
 */
@Component
public class BloomFilterService {

    @Autowired
    private JedisCluster jedisCluster;

    /**
     * total length of the Bloom filter
     */
    private static int sizeOfBloomFilter;
    /**
     * number of hash functions
     */
    private static int numberOfHashFunctions;
    /**
     * 误差率
     */
    private static final double falsePositiveProbability = 0.01;
    /**
     * 预计容量
     */
    private static final int expectedNumberOfElements = 10000;
    private static String bloom_name = "bloom_name_1";
    /**
     * encoding used for storing hash values as strings
     */
    private final Charset charset = Charset.forName("UTF-8");
    /**
     * MD5 gives good enough accuracy in most circumstances. Change to SHA1 if it's needed
     */
    private static final String hashName = "MD5";
    private static final MessageDigest digestFunction;

    /**
     * The digest method is reused between instances
     */
    static {
        MessageDigest messageDigest;
        try {
            messageDigest = java.security.MessageDigest.getInstance(hashName);
        } catch (NoSuchAlgorithmException e) {
            messageDigest = null;
        }
        digestFunction = messageDigest;
        // numberOfHashFunctions = ceil(-ln(falsePositiveProbability)/ln2)
        numberOfHashFunctions = (int) Math.ceil(-(Math.log(falsePositiveProbability) / Math.log(2)));
        // sizeOfBloomFilter = ceil(numberOfHashFunctions*expectedNumberOfElements/ln2)
        sizeOfBloomFilter = (int) Math.ceil(numberOfHashFunctions * expectedNumberOfElements / Math.log(2));
    }

    @PostConstruct
    public void init(){
        // 1. 获取数据
        List datas = new ArrayList<>();
        for (int i = 0; i < expectedNumberOfElements; i++) {
            datas.add(i + "");
        }
        if (jedisCluster.get(bloom_name) == null) {
            jedisCluster.setbit(bloom_name, 0, false);
        }
        // 2. 把数据放进bloomFilter
        JedisClusterPipeline pipelined = JedisClusterPipeline.pipelined(jedisCluster);
        try {
            datas.forEach(e -> add(e.getBytes(charset),pipelined));
        }finally {
            pipelined.syncAndReturnAll();
        }

    }

    /**
     * Adds an object to the Bloom filter. The output from the object's
     * toString() method is used as input to the hash functions.
     *
     * @param element is an element to register in the Bloom filter.
     */
    public void add(E element) {
        add(element.toString().getBytes(charset));
    }
    private void add(byte[] bytes) {

        int[] hashes = createHashes(bytes, numberOfHashFunctions);
        for (int hash : hashes) {
            jedisCluster.setbit(bloom_name, Math.abs(hash % sizeOfBloomFilter), true);
        }
    }
    /**
     * Adds an array of bytes to the Bloom filter.
     *
     * @param bytes array of bytes to add to the Bloom filter.
     */
    private void add(byte[] bytes,JedisClusterPipeline pipelined) {
        int[] hashes = createHashes(bytes, numberOfHashFunctions);
        for (int hash : hashes) {
            pipelined.setbit(bloom_name, Math.abs(hash % sizeOfBloomFilter), true);
        }
    }

    /**
     * Adds all elements from a Collection to the Bloom filter.
     *
     * @param c Collection of elements.
     */
    public void addAll(Collection c) {
        for (E element : c) {
            add(element);
        }
    }

    /**
     * Returns true if the element could have been inserted into the Bloom filter.
     * Use getFalsePositiveProbability() to calculate the probability of this
     * being correct.
     *
     * @param element element to check.
     * @return true if the element could have been inserted into the Bloom filter.
     */
    public boolean contains(E element) {
        return contains(element.toString().getBytes(charset));
    }

    public int failCount(List elements) {
        JedisClusterPipeline pipelined = JedisClusterPipeline.pipelined(jedisCluster);
        int count = 0;
        try {
            for (E e : elements) {
                if (!contains(e.toString().getBytes(charset), pipelined)) {
                    count++;
                }
            }
        }finally {
            pipelined.close();
        }

        return count;
    }

    /**
     * Returns true if the array of bytes could have been inserted into the Bloom filter.
     * Use getFalsePositiveProbability() to calculate the probability of this
     * being correct.
     *
     * @param bytes array of bytes to check.
     * @return true if the array could have been inserted into the Bloom filter.
     */
    private boolean contains(byte[] bytes) {
        int[] hashes = createHashes(bytes, numberOfHashFunctions);
        for (int hash : hashes) {
            if (!jedisCluster.getbit(bloom_name, Math.abs(hash % sizeOfBloomFilter))) {
                return false;
            }
        }
        return true;
    }

    private boolean contains(byte[] bytes,JedisClusterPipeline pipelined) {
        int[] hashes = createHashes(bytes, numberOfHashFunctions);
        for (int hash : hashes) {
            pipelined.getbit(bloom_name, Math.abs(hash % sizeOfBloomFilter));
        }
        List objects = pipelined.syncAndReturnAll();
        Optional any = objects.stream().filter(Boolean.FALSE::equals).findAny();
        return any.isPresent();
    }

    /**
     * Returns true if all the elements of a Collection could have been inserted
     * into the Bloom filter. Use getFalsePositiveProbability() to calculate the
     * probability of this being correct.
     *
     * @param c elements to check.
     * @return true if all the elements in c could have been inserted into the Bloom filter.
     */
    public boolean containsAll(Collection c) {
        for (E element : c) {
            if (!contains(element)) {
                return false;
            }
        }
        return true;
    }

    /**
     * 根据字节数组的内容生成摘要,并将结果分割成 4 字节的整数并存储在数组中。
     * 调用 digest 函数,直到生成所需的 int 数。每次生成摘要之前,都需要加盐,并且 salt++。
     *
     * @param data   specifies input data.
     * @param hashes number of hashes/int's to produce.
     * @return array of int-sized hashes
     */
    private static int[] createHashes(byte[] data, int hashes) {
        int[] result = new int[hashes];

        int k = 0;
        byte salt = 0;
        while (k < hashes) {
            byte[] digest;
            synchronized (digestFunction) {
                digestFunction.update(salt);
                salt++;
                digest = digestFunction.digest(data);
            }

            for (int i = 0; i < digest.length / 4 && k < hashes; i++) {
                int h = 0;
                for (int j = (i * 4); j < (i * 4) + 4; j++) {
                    h <<= 8;
                    h |= ((int) digest[j]) & 0xFF;
                }
                result[k] = h;
                k++;
            }
        }
        return result;
    }

    /**
     * Calculates a hash code for this class.
     *
     * @return hash code representing the contents of an instance of this class.
     */
    @Override
    public int hashCode() {
        int hash = 7;
        hash = 61 * hash + sizeOfBloomFilter;
        hash = 61 * hash + expectedNumberOfElements;
        hash = 61 * hash + numberOfHashFunctions;
        return hash;
    }

}
 

                            
                        
                    
                    
                    

你可能感兴趣的:(如何在海量数据中判断某条记录是否存在-布隆过滤器的使用(JDK版和Redis版))