数据科学之3-3深入理解Series和DataFrame
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
data = {'Country': ['Belgium', 'India', 'Brazil'],'Capital':['Brussles','New Delhi', 'Brasilia'],
'Population':[111190846, 1303171035, 207847528]}
Series
s1 = pd.Series(data['Country'])
s1
0 Belgium
1 India
2 Brazil
dtype: object
s1.values
array(['Belgium', 'India', 'Brazil'], dtype=object)
s1.index
RangeIndex(start=0, stop=3, step=1)
DataFrame
df1 = pd.DataFrame(data)
df1
|
Country |
Capital |
Population |
---|
0 |
Belgium |
Brussles |
111190846 |
---|
1 |
India |
New Delhi |
1303171035 |
---|
2 |
Brazil |
Brasilia |
207847528 |
---|
df1.iterrows()
for row in df1.iterrows():
print(row), print(type(row))
(0, Country Belgium
Capital Brussles
Population 111190846
Name: 0, dtype: object)
(1, Country India
Capital New Delhi
Population 1303171035
Name: 1, dtype: object)
(2, Country Brazil
Capital Brasilia
Population 207847528
Name: 2, dtype: object)
DataFrame的IO操作
import webbrowser
link = "http://pandas.pydata.org/pandas-docs/version/0.20/io.html"
webbrowser.open(link)
True
df1 = pd.read_clipboard()
df1
|
Format Type |
Data Description |
Reader |
Writer |
---|
0 |
text |
CSV |
read_csv |
to_csv |
---|
1 |
text |
JSON |
read_json |
to_json |
---|
2 |
text |
HTML |
read_html |
to_html |
---|
3 |
text |
Local clipboard |
read_clipboard |
to_clipboard |
---|
4 |
binary |
MS Excel |
read_excel |
to_excel |
---|
5 |
binary |
HDF5 Format |
read_hdf |
to_hdf |
---|
6 |
binary |
Feather Format |
read_feather |
to_feather |
---|
7 |
binary |
Msgpack |
read_msgpack |
to_msgpack |
---|
8 |
binary |
Stata |
read_stata |
to_stata |
---|
9 |
binary |
SAS |
read_sas |
|
---|
10 |
binary |
Python Pickle Format |
read_pickle |
to_pickle |
---|
11 |
SQL |
SQL |
read_sql |
to_sql |
---|
12 |
SQL |
Google Big Query |
read_gbq |
to_gbq |
---|
# 复制一个12这个数字然后执行这个语句 会把df1中的数据写到粘贴板里
df1.to_clipboard()
df1.to_csv('df1.csv', index=False) # 去掉行索引
!ls
!more df1.csv
# 读取 csv
df2 = pd.read_csv('df1.csv')
df2
|
Format Type |
Data Description |
Reader |
Writer |
---|
0 |
text |
CSV |
read_csv |
to_csv |
---|
1 |
text |
JSON |
read_json |
to_json |
---|
2 |
text |
HTML |
read_html |
to_html |
---|
3 |
text |
Local clipboard |
read_clipboard |
to_clipboard |
---|
4 |
binary |
MS Excel |
read_excel |
to_excel |
---|
5 |
binary |
HDF5 Format |
read_hdf |
to_hdf |
---|
6 |
binary |
Feather Format |
read_feather |
to_feather |
---|
7 |
binary |
Msgpack |
read_msgpack |
to_msgpack |
---|
8 |
binary |
Stata |
read_stata |
to_stata |
---|
9 |
binary |
SAS |
read_sas |
|
---|
10 |
binary |
Python Pickle Format |
read_pickle |
to_pickle |
---|
11 |
SQL |
SQL |
read_sql |
to_sql |
---|
12 |
SQL |
Google Big Query |
read_gbq |
to_gbq |
---|
df1.to_json()
'{"Format Type":{"0":"text","1":"text","2":"text","3":"text","4":"binary","5":"binary","6":"binary","7":"binary","8":"binary","9":"binary","10":"binary","11":"SQL","12":"SQL"},"Data Description":{"0":"CSV","1":"JSON","2":"HTML","3":"Local clipboard","4":"MS Excel","5":"HDF5 Format","6":"Feather Format","7":"Msgpack","8":"Stata","9":"SAS","10":"Python Pickle Format","11":"SQL","12":"Google Big Query"},"Reader":{"0":"read_csv","1":"read_json","2":"read_html","3":"read_clipboard","4":"read_excel","5":"read_hdf","6":"read_feather","7":"read_msgpack","8":"read_stata","9":"read_sas","10":"read_pickle","11":"read_sql","12":"read_gbq"},"Writer":{"0":"to_csv","1":"to_json","2":"to_html","3":"to_clipboard","4":"to_excel","5":"to_hdf","6":"to_feather","7":"to_msgpack","8":"to_stata","9":" ","10":"to_pickle","11":"to_sql","12":"to_gbq"}}'
pd.read_json(df1.to_json())
|
Format Type |
Data Description |
Reader |
Writer |
---|
0 |
text |
CSV |
read_csv |
to_csv |
---|
1 |
text |
JSON |
read_json |
to_json |
---|
10 |
binary |
Python Pickle Format |
read_pickle |
to_pickle |
---|
11 |
SQL |
SQL |
read_sql |
to_sql |
---|
12 |
SQL |
Google Big Query |
read_gbq |
to_gbq |
---|
2 |
text |
HTML |
read_html |
to_html |
---|
3 |
text |
Local clipboard |
read_clipboard |
to_clipboard |
---|
4 |
binary |
MS Excel |
read_excel |
to_excel |
---|
5 |
binary |
HDF5 Format |
read_hdf |
to_hdf |
---|
6 |
binary |
Feather Format |
read_feather |
to_feather |
---|
7 |
binary |
Msgpack |
read_msgpack |
to_msgpack |
---|
8 |
binary |
Stata |
read_stata |
to_stata |
---|
9 |
binary |
SAS |
read_sas |
|
---|
df1.to_html('df.html')
df1.to_excel('df1.xlsx')