Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库问题

前言

最近在做阅读类的业务,需要记录用户的PV,UV;

项目状况:前期尝试业务阶段;

特点:

快速实现(不需要做太重,满足初期推广运营即可)快速投入市场去运营

收集用户的原始数据,三要素:

谁在什么时间阅读哪篇文章

提到PV,UV脑海中首先浮现特点:

需要考虑性能(每个客户每打开一篇文章进行记录)允许数据有较小误差(少部分数据丢失)

架构设计

架构图:

Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库问题_第1张图片

时序图

Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库问题_第2张图片

记录基础数据MySQL表结构

CREATE TABLE `zh_article_count` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `bu_no` varchar(32) DEFAULT NULL COMMENT '业务编码',
  `customer_id` varchar(32) DEFAULT NULL COMMENT '用户编码',
  `type` int(2) DEFAULT '0' COMMENT '统计类型:0APP内文章阅读',
  `article_no` varchar(32) DEFAULT NULL COMMENT '文章编码',
  `read_time` datetime DEFAULT NULL COMMENT '阅读时间',
  `create_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `update_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '更新时间',
  `param1` int(2) DEFAULT NULL COMMENT '预留字段1',
  `param2` int(4) DEFAULT NULL COMMENT '预留字段2',
  `param3` int(11) DEFAULT NULL COMMENT '预留字段3',
  `param4` varchar(20) DEFAULT NULL COMMENT '预留字段4',
  `param5` varchar(32) DEFAULT NULL COMMENT '预留字段5',
  `param6` varchar(64) DEFAULT NULL COMMENT '预留字段6',
  PRIMARY KEY (`id`) USING BTREE,
  UNIQUE KEY `uk_zh_article_count_buno` (`bu_no`),
  KEY `key_zh_article_count_csign` (`customer_id`),
  KEY `key_zh_article_count_ano` (`article_no`),
  KEY `key_zh_article_count_rtime` (`read_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='文章阅读统计表';

技术实现方案

SpringBoot

Redis

MySQL

代码实现

完整代码(GitHub,欢迎大家Star,Fork,Watch)

https://github.com/dangnianchuntian/springboot

主要代码展示

Controller

/*
 * Copyright (c) 2020. [email protected] All Rights Reserved.
 * 项目名称:Spring Boot实战解决高并发数据入库: Redis 缓存+MySQL 批量入库
 * 类名称:ArticleCountController.java
 * 创建人:张晗
 * 联系方式:[email protected]
 * 开源地址: https://github.com/dangnianchuntian/springboot
 * 博客地址: https://zhanghan.blog.csdn.net
 */

package com.zhanghan.zhredistodb.controller;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.validation.annotation.Validated;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;
import com.zhanghan.zhredistodb.controller.request.PostArticleViewsRequest;
import com.zhanghan.zhredistodb.service.ArticleCountService;
@RestController
public class ArticleCountController {
    @Autowired
    private ArticleCountService articleCountService;
   /**
    * 记录用户访问记录
    */
    @RequestMapping(value = "/post/article/views", method = RequestMethod.POST)
    public Object postArticleViews(@RequestBody @Validated PostArticleViewsRequest postArticleViewsRequest) {
        return articleCountService.postArticleViews(postArticleViewsRequest);
    }
    /**
     *  批量将缓存中的数据同步到MySQL(模拟定时任务操作)
     */
    @RequestMapping(value = "/post/batch", method = RequestMethod.POST)
    public Object postBatch() {
        return articleCountService.postBatchRedisToDb();
}

Service

/*
 * Copyright (c) 2020. [email protected] All Rights Reserved.
 * 项目名称:Spring Boot实战解决高并发数据入库: Redis 缓存+MySQL 批量入库
 * 类名称:ArticleCountServiceImpl.java
 * 创建人:张晗
 * 联系方式:[email protected]
 * 开源地址: https://github.com/dangnianchuntian/springboot
 * 博客地址: https://zhanghan.blog.csdn.net
 */

package com.zhanghan.zhredistodb.service.impl;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.stream.Collectors;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;
import org.springframework.util.CollectionUtils;
import com.alibaba.fastjson.JSON;
import com.zhanghan.zhredistodb.controller.request.PostArticleViewsRequest;
import com.zhanghan.zhredistodb.dto.ArticleCountDto;
import com.zhanghan.zhredistodb.mybatis.mapper.XArticleCountMapper;
import com.zhanghan.zhredistodb.service.ArticleCountService;
import com.zhanghan.zhredistodb.util.wrapper.WrapMapper;
import cn.hutool.core.util.IdUtil;
@Service
public class ArticleCountServiceImpl implements ArticleCountService {
    private static Logger logger = LoggerFactory.getLogger(ArticleCountServiceImpl.class);
    @Autowired
    private RedisTemplate strRedisTemplate;
    private XArticleCountMapper xArticleCountMapper;
    @Value("${zh.article.count.redis.key:zh}")
    private String zhArticleCountRedisKey;
    @Value("#{T(java.lang.Integer).parseInt('${zh..article.read.num:3}')}")
    private Integer articleReadNum;
    /**
     * 记录用户访问记录
     */
    @Override
    public Object postArticleViews(PostArticleViewsRequest postArticleViewsRequest) {
        ArticleCountDto articleCountDto = new ArticleCountDto();
        articleCountDto.setBuNo(IdUtil.simpleUUID());
        articleCountDto.setCustomerId(postArticleViewsRequest.getCustomerId());
        articleCountDto.setArticleNo(postArticleViewsRequest.getArticleNo());
        articleCountDto.setReadTime(new Date());
        String strArticleCountDto = JSON.toJSONString(articleCountDto);
        strRedisTemplate.opsForList().rightPush(zhArticleCountRedisKey, strArticleCountDto);
        return WrapMapper.ok();
    }
     * 批量将缓存中的数据同步到MySQL
    public Object postBatchRedisToDb() {
        Date now = new Date();
        while (true) {
            List strArticleCountList =
                    strRedisTemplate.opsForList().range(zhArticleCountRedisKey, 0, articleReadNum);
            if (CollectionUtils.isEmpty(strArticleCountList)) {
                return WrapMapper.ok();
            }
            List articleCountDtoList = new ArrayList<>();
            strArticleCountList.stream().forEach(x -> {
                ArticleCountDto articleCountDto = JSON.parseObject(x, ArticleCountDto.class);
                articleCountDtoList.add(articleCountDto);
            });
            //过滤出本次定时任务之前的缓存中数据,防止死循环
            List beforeArticleCountDtoList = articleCountDtoList.stream().filter(x -> x.getReadTime()
                    .before(now)).collect(Collectors.toList());
            if (CollectionUtils.isEmpty(beforeArticleCountDtoList)) {
            xArticleCountMapper.batchAdd(beforeArticleCountDtoList);
            Integer delSize = beforeArticleCountDtoList.size();
            strRedisTemplate.opsForList().trim(zhArticleCountRedisKey, delSize, -1L);
        }
}

测试

模拟用户请求访问后台(多次请求)

Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库问题_第3张图片

查看缓存中访问数据

Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库问题_第4张图片

模拟定时任务将缓存中数据同步到DB中

Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库问题_第5张图片

这时查看缓存中的数据已经没了

Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库问题_第6张图片

查看数据库表结构

Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库问题_第7张图片

总结

  • 项目中定时任务
  • 问演示方便用http代替定时任务调度;实际项目中用XXL-job,参考:定时任务的选型及改造
  • 定时任务项目中用redis锁防止并发(定时任务调度端多次调度等),参考:Redis实现计数器—接口防刷—升级版(Redis+Lua)
  • 后期运营数据可以从阅读记录表中拉数据进行相关分析
  • 访问量大:可以将MySQL中的阅读记录表定时迁移走(MySQL建历史表,MongoDB等)

到此这篇关于Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库的文章就介绍到这了,更多相关Spring Boot高并发数据入库内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

你可能感兴趣的:(Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库问题)