一个统计用户新增活跃留存的方案

背景

产品上线后,出于运营的需要,我们要对用户进行跟踪,分析用户数据。本文要介绍的是如何统计用户新增数、活跃数和留存率,时间跨度是天,即统计每日新增(DNU),日活(DAU)和某日新增的一批用户在接下来的一段时间内每天活跃的百分比。

使用范围

本方案适用于用户量不太大(日活在百万以内,日活百万以上不是不能用,只是在统计数据时耗时太长不太合适),尤其适合小团队或个人开发者(比如你公司服务端接口开发是你,运维也是你,现在老板又来叫你做数据报表)。如果你的产品的日活有几百万甚至几千万或过亿,这样的产品当然是完全可以养一个大数据部门的,本方案并不适用这种情况。

涉及到的工具和技术点

  1. shell脚本

本方案需要你懂一点儿shell,起码能看懂,也要求你知道怎么写crontab定时任务。

  1. MySQL

本方案需要你熟练使用sql,知道怎么定义存储过程,知道分区表的概念和用法。

实现过程

一、目标

由于数据量是不断增加的,所以我们的目标是要把原始数据聚合成一张可以直接用一条select语句就可以查看每日新增、日活和留存率的表,并且只能做单表查询,否则当数据量增大时,联表查询的速度会大大下降。而且为了防止出错,我们的数据还需要可以重跑但是不会影响到已存在的数据。

最终呈现给运营人员看到的数据是这样的:

新增-活跃表

日期 维度1 维度2 新增数 活跃数
2022-02-09 合计 合计 1000 5000
2022-02-08 合计 合计 1000 4500
2022-02-07 合计 合计 1000 4000

用户留存表

日期 维度1 维度2 新增数 次日留存率 2日留存率 3日留存率
2022-02-09 合计 合计 1000 0 0 0
2022-02-08 合计 合计 1000 60% 0 0
2022-02-07 合计 合计 1000 60% 50% 0

简单解释一下上面两个表的结构:因为我们是按天统计的,所以日期都是以天为单位,用户可能有不同的国家或地区,不同版本,不同手机型号等等,所以就有了各个维度。用户留存表的数据要注意,比如今天是2022年2月9日,那么就只能统计到9号的新增,9号新增用户的日次留存是10号才能统计到的,但是8号新增用户的次日留存在今天(也就是9号)就统计出来了,所以留存的数据是一个阶梯形状的。

二、收集数据

为了方便介绍本方案,这里假设只有日期、国家、版本号三个维度。

收集数据的下一步是数据入库,为了方便,需要把数据格式进行转换。因为服务端接口现在一般都是使用json格式的数据进行通信,如果直接把json格式的数据输出到日志文件,处理起来会非常麻烦,所以需要在服务端接收到统计日志时,把数据输出到单独的日志文件中,还要按照MySQL的load命令可以识别的数据格式。

在输出日志之前,先确定好都需要哪些数据,这里需要的数据如下:

ts:timestamp,时间戳。服务端接收到日志的时间,格式是yyyy-MM-DD HH:mm:ss。

device_id:设备id,这里是用来唯一标识用户的一个字符串,比如在android设备上可以用android id,总之这个字段是用来确定一台设备的,要保证不同的设备设备id不同。

country:用户所在的国家。如果你是只做一个国家的,比如只做国内市场,也可以把这个字段换成省份或者城市,总之根据运营需求去改变。

version:应用版本号,一般是一个整数。

于是就可以确定日志的格式如下:

2022-02-09 13:14:15||aaaaaa||CN||100
2022-02-09 13:14:16||bbbbbb||US||100
2022-02-09 13:14:17||cccccc||NL||100

也就是一条数据占一行,字段之间使用双竖线分隔,当然这里不一定是双竖线分隔,也可以换成其它的,原则是字符数少而且不能被字段的值包含,不然在数据入库时会出现字段不对应的问题。

再考虑两个方面:

  1. 如果数据量较大要怎么处理?
  2. 可能有的字段的长度没法一下子确定怎么处理?
  3. 保留数据的策略应该怎样设置?

第1个问题,当数据量大时,可以考虑把日志文件切割成更小的时间段,比如每小时一个日志文件,然后下一小时就把上一个小时的数据入库。

第2个问题,原始数据表的字段长度定义得大一些,做到即使以后字段有变化,也可以适应。

第3个问题,因为我们的目标是跑出最后的报表,所以不可能一直保存着所有的原始日志数据,为了防止出错,可能只是保留最近几天的,一个简单的策略是在每次日志数据入库前用delete语句把前几天的数据删除了,但是直接使用delete有两个问题:一是MySQL要扫描全表删除数据,比较耗时;而是MySQL的delete + where删除可能只是假删除,磁盘不会立即释放。所以这里使用分区表来实现,每天的数据作为一个分区,删除数据时直接删除分区,数据入库时先创建分区。

于是得到原始数据表的DDL如下:

CREATE TABLE `st_base` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'ID',
  `dd` int(11) NOT NULL DEFAULT '0' COMMENT '天数,格式是yyyyMMddHH',
  `ts` varchar(64) COLLATE utf8_bin NOT NULL DEFAULT '' COMMENT '时间戳',
	`device_id` varchar(64) COLLATE utf8_bin NOT NULL DEFAULT '' COMMENT '设备id',
	`country` varchar(64) COLLATE utf8_bin NOT NULL DEFAULT '' COMMENT '国家',
	`version` varchar(64) COLLATE utf8_bin NOT NULL DEFAULT '' COMMENT '版本号',
	PRIMARY KEY (`id`,`dd`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='原始数据表'
/*!50100 PARTITION BY LIST (dd)
(PARTITION p20220209 VALUES IN (20220209) ENGINE = InnoDB) */

三、数据入库

有了格式化的日志文件和数据表,就可以通过shell脚本把数据入库了。步骤如下:

  1. 删除历史日志的分区
  2. 删除执行日期的分区(这一步在重跑数据很有用)
  3. 创建执行日期的分区
  4. 使用MySQL的load命令把数据从日志文件加载到数据库中

这里只说一下重要的命令:

  1. 删除和创建分区可以分别使用下面两个命令:
drop_sql="alter table st_base drop partition pxxxxxxxx" # 这里的xxxxxxxx要根据执行日期转换一下
add_sql="alter table st_base add partition (partition pxxxxxxxx values in (xxxxxxxx) engine=innodb)"

mysql -u${username} -p${password} -D${database} -e "${drop_sql}"

mysql -u${username} -p${password} -D${database} -e "${add_sql}"

上面使用mysql命令指定了用户名、密码、数据库名和sql语句(-e参数)

  1. 从文件加载数据入库
log_file=xxxx #日志文件名
dd=xxxxxxxx #执行日期
load_sql="load data local infile '${log_file}' ignore into table st_base fields terminated by '||' lines terminated by '\n' (ts,device_id,country,version) set dd='${dd}'"
mysql -u${username} -p${password} -D${database} -e "${load_sql}"
  1. 定时任务

因为我们是每天入库一次,所以可以在每天的0时10分去跑上面的脚本任务。假设上面的脚本文件保存为st_base.sh

可以通过crontab -e编辑定时任务:

10 0 * * * /path/to/job/st_base.sh

当然最好的做法是把执行日期当做脚本的参数传入,这样可以实现重跑某天的数据了。

四、清洗数据

在上一步得到了原始数据之后,接下来的工作都可以在MySQL中完成,首先要清洗数据。

这一步的目的有两个:

  1. 确定好数据类型
  2. 数据去重

先创建一个临时表tmp_base,这个表用来转换数据类型,如果有一些字段的值需要转换的也可以在这里做(举个例子:假如客户端获取到的国家有几种途径,分别是获取了sim卡国家,网络国家,手机国家,到了服务端后服务器根据客户端的ip也解析出了一个国家,但是运营的时候可能只需要一个最接近用户的真实国家,那么就可以按照优先级来确定,当然本文没有多个国家的问题),DDL如下:

CREATE TABLE `tmp_base` (
  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT 'ID',
  `dt` date NOT NULL COMMENT '日期',
	`device_id` varchar(32) COLLATE utf8_bin NOT NULL DEFAULT '' COMMENT '设备id',
	`country` varchar(8) COLLATE utf8_bin DEFAULT NULL,
  `version` int(11) NOT NULL DEFAULT '0' COMMENT '版本号',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='用户基础临时表'

再创建一个用户总表total_base,这个表用来存放所有用户的数据,每个用户只有一条数据,DDL如下:

CREATE TABLE `total_base` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'ID',
  `dt` date NOT NULL COMMENT '新增日期',
  `device_id` varchar(32) COLLATE utf8_bin NOT NULL DEFAULT '' COMMENT '设备id',
	`country` varchar(8) COLLATE utf8_bin DEFAULT NULL,
  `version` int(11) NOT NULL DEFAULT '0' COMMENT '版本号',
  PRIMARY KEY (`id`),
  UNIQUE KEY `device` (`device_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='用户总表';

创建一个流水表flow_base,同样以日期作为分区字段,DDL如下:

CREATE TABLE `flow_base` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'ID',
  `dt` date NOT NULL DEFAULT '2022-01-01' COMMENT '日期',
	`device_id` varchar(32) COLLATE utf8_bin NOT NULL DEFAULT '' COMMENT '设备id',
	`country` varchar(8) COLLATE utf8_bin DEFAULT NULL,
  `version` int(11) NOT NULL DEFAULT '0' COMMENT '版本号',
  `rdt` date NOT NULL DEFAULT '2022-01-01' COMMENT '用户注册日期',
  `dd` int(11) NOT NULL DEFAULT '0' COMMENT '日期(yyyyMMdd),用来做分区',
  PRIMARY KEY (`id`,`dd`),
  UNIQUE KEY `unique` (`dt`,`device_id`,`dd`)
) ENGINE=InnoDB CHARSET=utf8 COLLATE=utf8_bin COMMENT='用户基础流水表'
/*!50100 PARTITION BY LIST (dd)
(PARTITION p20220209 VALUES IN (20220209) ENGINE = InnoDB) */

注意到流水表flow_base中有一个rdt的字段,这字段是用来存放这个用户的注册日期,方便后面统计留存使用的。

准备好表结构之后,开始清洗数据。清洗数据使用MySQL的存储过程功能,创建一个存储过程sp_data_cleaning,在这个存储过程中,需要做以下几件事:

  1. 把原始数据表st_base中的数据清洗到临时表tmp_base,如果有字段的值需要转换也在这一步做。
  2. 把临时表tmp_base中的用户添加到用户总表total_base中。
  3. 把临时表tmp_base中的数据添加到流水表中,并且联合用户总表,把用户的注册日期也填充好。

于是可以得到存储过程sp_data_cleaning的DDL如下:

CREATE PROCEDURE `sp_data_cleaning`(IN v_dt VARCHAR(10))
BEGIN
	# 变量
	declare pname varchar(10);
	declare v_is_pname_exists int;
	
	# 清除tmp_base表数据
    truncate table tmp_base;

	# 清洗数据
		insert into tmp_base(
			`dt`,
	  	`device_id`,
			`country`,
	  	`version`
			)
		select
			v_dt,
			`device_id`,
	  	`country`,
	  	`version`
	  from `st_base`
  	where `dd` = replace(v_dt,'-','');
  	
	# 数据加入用户总表
		insert ignore into total_base(
			`dt`,
			`device_id`,
			`country`,
			`version`
			)
		select
			`dt`,
			`device_id`,
			`country`,
			`version`
		from tmp_base;
  
	# 给流水表创建分区
	select concat('p', replace(v_dt, '-', '')) into pname;
	
	# 查找是否已经存在执行日期的分区
	select max(a) into v_is_pname_exists
	from (
		select 1 as a from information_schema.PARTITIONS 
		where `TABLE_SCHEMA` = 'your_database_name' 
			and `TABLE_NAME` = 'flow_base'
			and `PARTITION_NAME`=pname
		union all
		select 0 
		) t;
	
	# 如果已经存在先删除
	if v_is_pname_exists=1 then
	set @drop_sql=concat('alter table flow_base drop partition ', pname);
	prepare stmt from @drop_sql;
	execute stmt;
	deallocate prepare stmt;
	end if;

	# 创建分区
	set @add_sql=concat('alter table flow_base add partition (partition ', pname, ' values in (', v_date, ') ENGINE = InnoDB)');
	prepare stmt from @add_sql;
	execute stmt;
	deallocate prepare stmt;		

	# 数据加入流水表
		insert ignore into flow_base(
			`dt`,
			`device_id`,
			`country`,
			`version`,
			`rdt`,
			`dd`
			)
		select
			v_dt,
			t1.`device_id`,
			t1.`country`,
			t1.`version`,
			t2.`dt`,
			replace(v_dt, '-', '')
		from tmp_base t1
		left outer join total_base t2
		on (t1.`device_id`=t2.`device_id`);
END

五、数据聚合

经过上面几个步骤的处理,现在已经得到了半成品的数据,可以进行聚合了。根据第一步的目标报表,可以确定两个表的结构:一个是用户的新增-活跃表,另一个是用户的留存表,DDL如下:

新增-活跃表:

CREATE TABLE `rpt_base_active` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'ID',
  `dt` date NOT NULL DEFAULT '2022-01-01' COMMENT '日期',
	`country` varchar(8) COLLATE utf8_bin DEFAULT NULL,
  `version` int(11) NOT NULL DEFAULT '0' COMMENT '版本号',
  `new_users` smallint(4) NOT NULL DEFAULT '0' COMMENT '新增数',
  `active_users` smallint(4) NOT NULL DEFAULT '0' COMMENT '活跃数',
  PRIMARY KEY (`id`),
  KEY `index1` (`dt`),
  KEY `index3` (`country`,`version`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='用户新增活跃表'

用户留存表(这里假设只看7天的留存情况,如果需要看更多留存天数,可以自行修改):

CREATE TABLE `rpt_base` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'ID',
  `dt` date NOT NULL DEFAULT '2022-01-01' COMMENT '日期',
	`country` varchar(8) COLLATE utf8_bin DEFAULT NULL,
  `version` int(11) NOT NULL DEFAULT '0' COMMENT '版本号',
  `d0` smallint(4) NOT NULL DEFAULT '0' COMMENT '新增数',
  `d1` smallint(4) NOT NULL DEFAULT '0' COMMENT '次日留存数',
  `d2` smallint(4) NOT NULL DEFAULT '0' COMMENT '2日留存数',
  `d3` smallint(4) NOT NULL DEFAULT '0' COMMENT '3日留存数',
  `d4` smallint(4) NOT NULL DEFAULT '0' COMMENT '4日留存数',
  `d5` smallint(4) NOT NULL DEFAULT '0' COMMENT '5日留存数',
  `d6` smallint(4) NOT NULL DEFAULT '0' COMMENT '6日留存数',
  `d7` smallint(4) NOT NULL DEFAULT '0' COMMENT '7日留存数',
  PRIMARY KEY (`id`),
  KEY `index1` (`dt`),
  KEY `index3` (`country`,`version`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='用户留存表'

注意,以上两个表的索引创建并不是固定的,需要根据运营的实际情况去创建相关的索引。

在跑数据之前,先聚合一下执行日期的数据,创建一个临时表a_flow_base,这个表用来初步聚合数据,DDL如下:

CREATE TABLE `a_flow_base` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'ID',
  `dt` date NOT NULL DEFAULT '2022-01-01' COMMENT '日期',
	`country` varchar(8) COLLATE utf8_bin DEFAULT NULL,
  `version` int(11) NOT NULL DEFAULT '0' COMMENT '应用版本号',
  `rdt` date NOT NULL DEFAULT '2022-01-01' COMMENT '用户注册日期',
  `rdays` smallint(4) NOT NULL DEFAULT '0' COMMENT '留存天数',
  `users` smallint(4) NOT NULL DEFAULT '0' COMMENT '用户数',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='用户基础数据聚合表'

首先初步聚合用户数据,创建一个存储过程sp_a_flow_base,DDL如下:

CREATE PROCEDURE `sp_a_flow_base`(in v_dt char(10))
BEGIN
	declare d0 date;
	declare d1 date;
	declare d2 date;
	declare d3 date;
	declare d4 date;
	declare d5 date;
	declare d6 date;
	declare d7 date;
	
	select date_sub(v_dt, interval 0 day) into d0;
	select date_sub(v_dt, interval 1 day) into d1;
	select date_sub(v_dt, interval 2 day) into d2;
	select date_sub(v_dt, interval 3 day) into d3;
	select date_sub(v_dt, interval 4 day) into d4;
	select date_sub(v_dt, interval 5 day) into d5;
	select date_sub(v_dt, interval 6 day) into d6;
	select date_sub(v_dt, interval 7 day) into d7;
	
	# 清除a_flow_base表数据
	truncate table a_flow_base;
	
	insert into a_flow_base(
		`dt`,
		`country`,
  	`version_code`,
  	`rdt`,
  	`rdays`,
  	`users`
		)
	select 
		t1.`dt`,
  	t1.`country`,
  	t1.`version`,
  	t1.`rdt`,
  	datediff(t1.`dt`, t1.`rdt`) as rdays,
  	count(*) as users
	from flow_base t1
	where t1.`dt` in (d0,d1,d2,d3,d4,d5,d6,d7)
	group by 
		t1.`dt`,
  	t1.`country`,
  	t1.`version`,
  	t1.`rdt`;
END

初步聚合了数据后,开始正式聚合数据,创建一个存储过程sp_rpt_base,DDL如下:

CREATE PROCEDURE `sp_rpt_base`(in v_dt char(10))
BEGIN
	declare d0 date;
	declare d1 date;
	declare d2 date;
	declare d3 date;
	declare d4 date;
	declare d5 date;
	declare d6 date;
	declare d7 date;
	
	select date_sub(v_dt, interval 0 day) into d0;
	select date_sub(v_dt, interval 1 day) into d1;
	select date_sub(v_dt, interval 2 day) into d2;
	select date_sub(v_dt, interval 3 day) into d3;
	select date_sub(v_dt, interval 4 day) into d4;
	select date_sub(v_dt, interval 5 day) into d5;
	select date_sub(v_dt, interval 6 day) into d6;
	select date_sub(v_dt, interval 7 day) into d7;
	
	# 删除数据
	delete from rpt_base_active where `dt` = v_dt;
	
	insert into rpt_base_active (
		`dt`,
		`country`,
  	`version`,
  	`new_users`,
  	`active_users`
		)
	select
		`dt`,
		`country`,
		`version`,
		sum(if(`dt`=`rdt`, 1, 0)) as `new_users`,
		sum(1) as `active_users`
	from flow_base
	where dt=v_dt
	group by 
		`dt`,
		`country`,
		`version`
		;

	# 删除数据
	delete from rpt_base where `dt` in (d0,d1,d2,d3,d4,d5,d6,d7);
	
	insert into rpt_base(
		`dt`,
		`country`,
  	`version`,
  	`d0`,
  	`d1`,
  	`d2`,
  	`d3`,
  	`d4`,
  	`d5`,
  	`d6`,
  	`d7`
		)
	select
		t1.`rdt`,
		t1.`country`,
		t1.`version`,
		sum(case when t1.`rdays`=0 then t1.`users` else 0 end) as d0,
		sum(case when t1.`rdays`=1 then t1.`users` else 0 end) as d1,
		sum(case when t1.`rdays`=2 then t1.`users` else 0 end) as d2,
		sum(case when t1.`rdays`=3 then t1.`users` else 0 end) as d3,
		sum(case when t1.`rdays`=4 then t1.`users` else 0 end) as d4,
		sum(case when t1.`rdays`=5 then t1.`users` else 0 end) as d5,
		sum(case when t1.`rdays`=6 then t1.`users` else 0 end) as d6,
		sum(case when t1.`rdays`=7 then t1.`users` else 0 end) as d7
		from a_flow_base t1
		group by
			t1.`rdt`,
			t1.`country`,
  		t1.`version`
			;
			
END

为了方便调用整个过程,可以再创建一个存储过程,把全过程写在一起,一次执行。创建一个存储过程sp_user,DDL如下:

CREATE PROCEDURE `sp_user`(in v_dt char(10))
BEGIN

	call sp_tmp_base(v_dt);
	call sp_data_cleaning(v_dt);
	call sp_a_flow_base(v_dt);
	call sp_rpt_base(v_dt);
	
END

这样,就可以添加定时任务每天定时跑前一天的数据了。

写在最后

流水表flow_base应该保留几天的数据?

这个看你的用户留存表需要看多少天留存数据,如果你要看7日留存,那么保留最近8天的数据,如果是想看30天留存,就保留最近31天的数据,依次类推。

如果运营人员或老板9点半上班,每天凌晨的0点开始跑前一天的数据,你将有9个半小时来跑前一天的数据。当然如果一天的数据要跑2个小时以上,还是考虑用Hadoop来做吧。``

你可能感兴趣的:(一个统计用户新增活跃留存的方案)