李航
决策树(decision)是一种基本的分类与回归算法。
决策树呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。
它可以认为是if-then规则的集合,也可以认为定义在特征空间与类空间上 的条件概率分布。
其主要优点在于模型具有可读性,分类速度快。
学习时,利用训练数据,根据损失函数最小化的原则建立决策树模型。 预测时,对新的数据,利用决策树模型进行分类。
决策树的学习通常包括三个部分:特征选择、决策树生成和决策树的修剪
决策树的思想主要来源于Quinlan在1986年提出的ID3算法和1993年的C4.5算 法,以及Breiman等人在1984年提出的CART算法决策树的一些优点:
易于理解和解释。数可以可视化。 几乎不需要数据预处理。其他方法经常需要数据标准化,创建虚拟变量和删除缺失值。决策树还不支持缺失值。 使用树的花费(例如预测数据)是训练数据点(data points)数量的对数。 可以同时处理数值变量和分类变量。其他方法大都适用于分析一种变量的集合。 可以处理多值输出变量问题。 使用白盒模型。如果一个情况被观察到,使用逻辑判断容易表示这种规则。相反,如果是黑盒模型(例如人工神经网络),结果会非常难解释。 可以使用统计检验检验模型。这样做被认为是提高模型的可行度。 即使对真实模型来说,假设无效的情况下,也可以较好的适用。决策树的一些缺点:
决策树学习可能创建一个过于复杂的树,并不能很好的预测数据。也就是过拟合。修剪机制(现在不支持),设置一个叶子节点需要的最小样本数量,或者数的最大深度,可以避免过拟合。 决策树可能是不稳定的,因为即使非常小的变异,可能会产生一颗完全不同的树。这个问题通过decision trees with an ensemble来缓解。 学习一颗最优的决策树是一个NP-完全问题under several aspects of optimality and even for simple concepts。因此,传统决策树算法基于启发式算法,例如贪婪算法,即每个节点创建最优决策。这些算法不能产生一个全家最优的决策树。对样本和特征随机抽样可以降低整体效果偏差。 概念难以学习,因为决策树没有很好的解释他们,例如,XOR, parity or multiplexer problems. 如果某些分类占优势,决策树将会创建一棵有偏差的树。因此,建议在训练之前,先抽样使样本均衡数据
data = np.array([[1,2,2,3],
[1,2,2,2],
[1,1,2,2],
[1,1,1,3],
[1,2,2,3],
[2,2,2,3],
[2,2,2,2],
[2,1,1,2],
[2,2,1,1],
[2,2,1,1],
[3,2,1,1],
[3,2,1,2],
[3,1,2,2],
[3,1,2,1],
[3,2,2,3]])
label = np.array([0,0,1,1,0,0,0,1,1,1,1,1,1,1,0])
target = [3,1,2,1]
python代码5.1例题ID3算法实现
import numpy as np
class Tree(object):
def __init__(self,node_type, Class = None, features = None):
self.node_type = node_type
self.dict = {}
self.Class = Class
self.feature_index = features
def add_tree(self,val,tree):
self.dict[val] = tree
def predict(self,features):
if self.node_type == 'leaf':
return self.Class
tree = self.dict[features[self.feature_index]]
return tree.predict(features)
class Id3_tree(object):
def __init__(self, data, label, features, epsilon):
self.leaf = 'leaf'
self.internal = 'internal'
self.epsilon = epsilon
self.root = self.__build(data, label, features)
def __build(self, data, labels,features):
label_kinds = np.unique(labels)
if len(np.unique(label_kinds)) == 1:
return Tree(self.leaf, label_kinds[0])
(max_class, max_len) = max([(i, len(list(filter(lambda x: x == i, labels))))
for i in range(len(label_kinds))],key=lambda x: x[1])
features_num = len(features)
if features_num == 0:
return Tree(self.leaf, label_kinds[0])
Hd = self.__caclulate_hd(labels)
Hda = self.__caclulate_hda(data,labels,features_num)
Gda = np.tile(Hd, features_num) - Hda
max_contribution_feature = list(Gda).index(np.max(Gda))
if Gda[max_contribution_feature] < self.epsilon:
return Tree(self.leaf, Class=max_class)
data_tmp = np.hstack((data[:, :max_contribution_feature], data[:, max_contribution_feature + 1:]))
sub_features = list(filter(lambda x: x != max_contribution_feature, features))
tree = Tree(self.internal, features=max_contribution_feature)
feature_s = np.unique(data[:, max_contribution_feature])
for feature_index, feature in enumerate(feature_s):
dx = np.where(data[:, max_contribution_feature] == feature)
sub_tree = self.__build(data_tmp[dx[0]], labels[dx[0]], sub_features)
tree.add_tree(feature, sub_tree)
return tree
def __caclulate_hd(self, labels):
label_kinds = np.unique(labels)
Hd = 0
for label in label_kinds:
count = list(labels).count(label)
p = float(count) / float(len(labels))
Hd -= p * np.log2(p)
return Hd
def __caclulate_hda(self, data, labels, features_num):
Hda = np.zeros(features_num)
for feature_index in range(features_num):
feature_s = np.unique(data[:, feature_index])
for feature in feature_s:
dx = np.where(data[:, feature_index] == feature)
p = float(len(dx[0])) / float(len(labels))
h = self.__caclulate_hd(labels[dx])
Hda[feature_index] += p * h
return Hda
id3_tree = Id3_tree(data, label, [i for i in range(4)], 0.1)
prediction = id3_tree.root.predict(target)
print('Target belong %s' % prediction)
python代码5.1例题C4.3算法实现
import numpy as np
class Tree(object):
def __init__(self,node_type, Class = None, features = None):
self.node_type = node_type
self.dict = {}
self.Class = Class
self.feature_index = features
def add_tree(self,val,tree):
self.dict[val] = tree
def predict(self,features):
if self.node_type == 'leaf':
return self.Class
tree = self.dict[features[self.feature_index]]
return tree.predict(features)
class C45_tree(object):
def __init__(self, data, label, features, epsilon):
self.leaf = 'leaf'
self.internal = 'internal'
self.epsilon = epsilon
self.root = self.__build(data, label, features)
def __build(self, data, labels,features):
label_kinds = np.unique(labels)
if len(np.unique(label_kinds)) == 1:
return Tree(self.leaf, label_kinds[0])
(max_class, max_len) = max([(i, len(list(filter(lambda x: x == i, labels))))
for i in range(len(label_kinds))],key=lambda x: x[1])
features_num = len(features)
if features_num == 0:
return Tree(self.leaf, label_kinds[0])
Hd = self.__caclulate_hd(labels)
Hda, Ha = self.__caclulate_hda_ha(data,labels,features_num)
Gda = np.tile(Hd, features_num) - Hda
Grda = Gda / Ha
max_contribution_feature = list(Grda).index(np.max(Grda))
if Grda[max_contribution_feature] < self.epsilon:
return Tree(self.leaf, Class=max_class)
data_tmp = np.hstack((data[:, :max_contribution_feature], data[:, max_contribution_feature + 1:]))
sub_features = list(filter(lambda x: x != max_contribution_feature, features))
tree = Tree(self.internal, features=max_contribution_feature)
feature_s = np.unique(data[:, max_contribution_feature])
for feature_index, feature in enumerate(feature_s):
dx = np.where(data[:, max_contribution_feature] == feature)
sub_tree = self.__build(data_tmp[dx[0]], labels[dx[0]], sub_features)
tree.add_tree(feature, sub_tree)
return tree
def __caclulate_hd(self, labels):
label_kinds = np.unique(labels)
Hd = 0
for label in label_kinds:
count = list(labels).count(label)
p = float(count) / float(len(labels))
Hd -= p * np.log2(p)
return Hd
def __caclulate_hda_ha(self, data, labels, features_num):
Hda = np.zeros(features_num)
Ha = np.zeros(features_num)
for feature_index in range(features_num):
feature_s = np.unique(data[:, feature_index])
for feature in feature_s:
dx = np.where(data[:, feature_index] == feature)
p = float(len(dx[0])) / float(len(labels))
h = self.__caclulate_hd(labels[dx])
Hda[feature_index] += p * h
Ha[feature_index] -= p * np.log2(p)
return Hda, Ha
c45_tree = C45_tree(data, label, [i for i in range(4)], 0.1)
prediction = c45_tree.root.predict(target)
print('Target belong %s' % prediction)
python代码5.1例题CART算法实现
import numpy as np
class Tree(object):
def __init__(self,node_type, Class = None, feature_index = None, feature = None):
self.node_type = node_type
self.dict = {}
self.Class = Class
self.feature_index = feature_index
self.feature = feature
def add_tree(self,val,tree):
self.dict[val] = tree
def predict(self,features):
if self.node_type == 'leaf':
return self.Class
if features[self.feature_index] == self.feature:
tree = self.dict[self.feature]
else:
tree = self.dict[-1]
return tree.predict(features)
class Id3_tree(object):
def __init__(self, data, label, features):
self.leaf = 'leaf'
self.internal = 'internal'
self.root = self.__build(data, label, features)
def __build(self, data, labels,features):
label_kinds = np.unique(labels)
if len(np.unique(label_kinds)) == 1:
return Tree(self.leaf, label_kinds[0])
features_num = len(features)
if features_num == 0:
return Tree(self.leaf, label_kinds[0])
Ga = self.__caclulate_ga(data,labels,features_num)
ga_fea_min = min(Ga[0])
fea_local = list(Ga[0]).index(ga_fea_min)
ga_fea_index = 0
for dx, i in enumerate(Ga[1:]):
ga_fea_min_tmp = min(i)
if ga_fea_min_tmp < ga_fea_min:
fea_local = list(i).index(ga_fea_min_tmp)
ga_fea_min = ga_fea_min_tmp
ga_fea_index = dx + 1
data_tmp = np.hstack((data[:, :ga_fea_index], data[:, ga_fea_index + 1:]))
sub_features = list(filter(lambda x: x != ga_fea_index, features))
feature_s = np.unique(data[:, ga_fea_index])
tree = Tree(self.internal, feature_index=features[ga_fea_index], feature=feature_s[fea_local])
dx_y = np.where(data[:, ga_fea_index] == feature_s[fea_local])
sub_tree = self.__build(data_tmp[dx_y], labels[dx_y], sub_features)
tree.add_tree(feature_s[fea_local], sub_tree)
dx_n = np.where(data[:, ga_fea_index] != feature_s[fea_local])
sub_tree = self.__build(data_tmp[dx_n], labels[dx_n], sub_features)
tree.add_tree(-1, sub_tree)
return tree
def __caclulate_q(self, labels):
label_kinds = np.unique(labels)
q = 0
for label in label_kinds:
count = list(labels).count(label)
p = float(count) / float(len(labels))
q += p * (1 - p)
return q
def __caclulate_ga(self, data, labels, features_num):
Ga = []
for feature_index in range(features_num):
feature_s = np.unique(data[:, feature_index])
Gai = np.zeros(len(feature_s))
for index, feature in enumerate(feature_s):
dx_y = np.where(data[:, feature_index] == feature)
p = float(len(dx_y[0])) / float(len(labels))
q_y = self.__caclulate_q(labels[dx_y])
dx_n = np.where(data[:, feature_index] != feature)
q_n = self.__caclulate_q(labels[dx_n])
dx = np.where(data[:, feature_index] == feature)
Gai[index] += (p * q_y + (1 - p) * q_n)
Ga.append(Gai)
return Ga
id3_tree = Id3_tree(data, label, [i for i in range(4)])
prediction = id3_tree.root.predict(target)
print('Target belong %s' % prediction)
sklearn代码所用数据为kaggle中mnist数据,将特征PCA至六维
# -*- coding: utf-8 -*-
"""
使用sklearn实现的DT算法进行分类的一个实例,
使用数据集是Kaggle数字手写体数据库
"""
import os
import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.decomposition import PCA
# 加载数据集
def load_data(filename, n, mode):
data_pd = pd.read_csv(filename)
data = np.asarray(data_pd)
pca = PCA(n_components=n)
if not mode == 'test':
dateset = pca.fit_transform(data[:, 1:])
return dateset, data[:, 0]
else:
dateset = pca.fit_transform(data)
return dateset, 1
def main(train_data_path, test_data_path, n_dim):
train_data, train_label = load_data(train_data_path, n_dim, 'train')
print("Train set :" + repr(len(train_data)))
test_data, _ = load_data(test_data_path, n_dim, 'test')
print("Test set :" + repr(len(test_data)))
dt = tree.DecisionTreeClassifier()
# 训练数据集
dt.fit(train_data, train_label)
# 训练准确率
score = dt.score(train_data, train_label)
print(">Training accuracy = " + repr(score))
predictions = []
for index in range(len(test_data)):
# 预测
result = dt.predict([test_data[index]])
# 预测,返回概率数组
predict2 = dt.predict_proba([test_data[index]])
predictions.append([index + 1, result[0]])
print(">Index : %s, predicted = %s p%s" % (index + 1, result[0], predict2))
columns = ['ImageId', 'Label']
save_file = pd.DataFrame(columns=columns, data=predictions)
save_file.to_csv('m.csv', index=False, encoding="utf-8")
if __name__ == "__main__":
train_data_path = 'train.csv'
test_data_path = 'train.csv'
n_dim = 6
main(train_data_path, test_data_path, n_dim)
课后习题
喜欢点赞关注哈