统计学习方法 李航 决策树模型 python sklearn 实现 及课后习题

  • 李航
    决策树(decision)是一种基本的分类与回归算法。
    决策树呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。
    它可以认为是if-then规则的集合,也可以认为定义在特征空间与类空间上 的条件概率分布。
    其主要优点在于模型具有可读性,分类速度快。
    学习时,利用训练数据,根据损失函数最小化的原则建立决策树模型。 预测时,对新的数据,利用决策树模型进行分类。
    决策树的学习通常包括三个部分:特征选择、决策树生成和决策树的修剪
    决策树的思想主要来源于Quinlan在1986年提出的ID3算法和1993年的C4.5算 法,以及Breiman等人在1984年提出的CART算法

  • 决策树的一些优点:
    易于理解和解释。数可以可视化。 几乎不需要数据预处理。其他方法经常需要数据标准化,创建虚拟变量和删除缺失值。决策树还不支持缺失值。 使用树的花费(例如预测数据)是训练数据点(data points)数量的对数。 可以同时处理数值变量和分类变量。其他方法大都适用于分析一种变量的集合。 可以处理多值输出变量问题。 使用白盒模型。如果一个情况被观察到,使用逻辑判断容易表示这种规则。相反,如果是黑盒模型(例如人工神经网络),结果会非常难解释。 可以使用统计检验检验模型。这样做被认为是提高模型的可行度。 即使对真实模型来说,假设无效的情况下,也可以较好的适用。

  • 决策树的一些缺点:
    决策树学习可能创建一个过于复杂的树,并不能很好的预测数据。也就是过拟合。修剪机制(现在不支持),设置一个叶子节点需要的最小样本数量,或者数的最大深度,可以避免过拟合。 决策树可能是不稳定的,因为即使非常小的变异,可能会产生一颗完全不同的树。这个问题通过decision trees with an ensemble来缓解。 学习一颗最优的决策树是一个NP-完全问题under several aspects of optimality and even for simple concepts。因此,传统决策树算法基于启发式算法,例如贪婪算法,即每个节点创建最优决策。这些算法不能产生一个全家最优的决策树。对样本和特征随机抽样可以降低整体效果偏差。 概念难以学习,因为决策树没有很好的解释他们,例如,XOR, parity or multiplexer problems. 如果某些分类占优势,决策树将会创建一棵有偏差的树。因此,建议在训练之前,先抽样使样本均衡

  • 数据

data = np.array([[1,2,2,3],
                 [1,2,2,2],
                 [1,1,2,2],
                 [1,1,1,3],
                 [1,2,2,3],
                 [2,2,2,3],
                 [2,2,2,2],
                 [2,1,1,2],
                 [2,2,1,1],
                 [2,2,1,1],
                 [3,2,1,1],
                 [3,2,1,2],
                 [3,1,2,2],
                 [3,1,2,1],
                 [3,2,2,3]])
label = np.array([0,0,1,1,0,0,0,1,1,1,1,1,1,1,0])
target = [3,1,2,1]

python代码5.1例题ID3算法实现

import numpy as np

class Tree(object):
    def __init__(self,node_type, Class = None, features = None):
        self.node_type = node_type
        self.dict = {}
        self.Class = Class
        self.feature_index = features

    def add_tree(self,val,tree):
        self.dict[val] = tree

    def predict(self,features):
        if self.node_type == 'leaf':
            return self.Class

        tree = self.dict[features[self.feature_index]]
        return tree.predict(features)

class Id3_tree(object):
    def __init__(self, data, label, features, epsilon):
        self.leaf = 'leaf'
        self.internal = 'internal'
        self.epsilon = epsilon
        self.root = self.__build(data, label, features)

    def __build(self, data, labels,features):
        label_kinds = np.unique(labels)
        if len(np.unique(label_kinds)) == 1:
            return Tree(self.leaf, label_kinds[0])
        (max_class, max_len) = max([(i, len(list(filter(lambda x: x == i, labels))))
                                    for i in range(len(label_kinds))],key=lambda x: x[1])
        features_num = len(features)
        if features_num == 0:
            return Tree(self.leaf, label_kinds[0])

        Hd = self.__caclulate_hd(labels)
        Hda = self.__caclulate_hda(data,labels,features_num)
        Gda = np.tile(Hd, features_num) - Hda

        max_contribution_feature = list(Gda).index(np.max(Gda))
        if Gda[max_contribution_feature] < self.epsilon:
            return Tree(self.leaf, Class=max_class)
        data_tmp = np.hstack((data[:, :max_contribution_feature], data[:, max_contribution_feature + 1:]))
        sub_features = list(filter(lambda x: x != max_contribution_feature, features))
        tree = Tree(self.internal, features=max_contribution_feature)
        feature_s = np.unique(data[:, max_contribution_feature])
        for feature_index, feature in enumerate(feature_s):
            dx = np.where(data[:, max_contribution_feature] == feature)
            sub_tree = self.__build(data_tmp[dx[0]], labels[dx[0]], sub_features)
            tree.add_tree(feature, sub_tree)
        return tree

    def __caclulate_hd(self, labels):
        label_kinds = np.unique(labels)
        Hd = 0
        for label in label_kinds:
            count = list(labels).count(label)
            p = float(count) / float(len(labels))
            Hd -= p * np.log2(p)
        return Hd

    def __caclulate_hda(self, data, labels, features_num):
        Hda = np.zeros(features_num)
        for feature_index in range(features_num):
            feature_s = np.unique(data[:, feature_index])
            for feature in feature_s:
                dx = np.where(data[:, feature_index] == feature)
                p = float(len(dx[0])) / float(len(labels))
                h = self.__caclulate_hd(labels[dx])
                Hda[feature_index] += p * h
        return Hda
id3_tree = Id3_tree(data, label, [i for i in range(4)], 0.1)
prediction = id3_tree.root.predict(target)
print('Target belong %s' % prediction)

python代码5.1例题C4.3算法实现

import numpy as np

class Tree(object):
    def __init__(self,node_type, Class = None, features = None):
        self.node_type = node_type
        self.dict = {}
        self.Class = Class
        self.feature_index = features

    def add_tree(self,val,tree):
        self.dict[val] = tree

    def predict(self,features):
        if self.node_type == 'leaf':
            return self.Class

        tree = self.dict[features[self.feature_index]]
        return tree.predict(features)

class C45_tree(object):
    def __init__(self, data, label, features, epsilon):
        self.leaf = 'leaf'
        self.internal = 'internal'
        self.epsilon = epsilon
        self.root = self.__build(data, label, features)

    def __build(self, data, labels,features):
        label_kinds = np.unique(labels)
        if len(np.unique(label_kinds)) == 1:
            return Tree(self.leaf, label_kinds[0])
        (max_class, max_len) = max([(i, len(list(filter(lambda x: x == i, labels))))
                                    for i in range(len(label_kinds))],key=lambda x: x[1])
        features_num = len(features)
        if features_num == 0:
            return Tree(self.leaf, label_kinds[0])

        Hd = self.__caclulate_hd(labels)
        Hda, Ha = self.__caclulate_hda_ha(data,labels,features_num)
        Gda = np.tile(Hd, features_num) - Hda
        Grda = Gda / Ha
        max_contribution_feature = list(Grda).index(np.max(Grda))
        if Grda[max_contribution_feature] < self.epsilon:
            return Tree(self.leaf, Class=max_class)
        data_tmp = np.hstack((data[:, :max_contribution_feature], data[:, max_contribution_feature + 1:]))
        sub_features = list(filter(lambda x: x != max_contribution_feature, features))
        tree = Tree(self.internal, features=max_contribution_feature)
        feature_s = np.unique(data[:, max_contribution_feature])
        for feature_index, feature in enumerate(feature_s):
            dx = np.where(data[:, max_contribution_feature] == feature)
            sub_tree = self.__build(data_tmp[dx[0]], labels[dx[0]], sub_features)
            tree.add_tree(feature, sub_tree)
        return tree

    def __caclulate_hd(self, labels):
        label_kinds = np.unique(labels)
        Hd = 0
        for label in label_kinds:
            count = list(labels).count(label)
            p = float(count) / float(len(labels))
            Hd -= p * np.log2(p)
        return Hd

    def __caclulate_hda_ha(self, data, labels, features_num):
        Hda = np.zeros(features_num)
        Ha = np.zeros(features_num)
        for feature_index in range(features_num):
            feature_s = np.unique(data[:, feature_index])
            for feature in feature_s:
                dx = np.where(data[:, feature_index] == feature)
                p = float(len(dx[0])) / float(len(labels))
                h = self.__caclulate_hd(labels[dx])
                Hda[feature_index] += p * h
                Ha[feature_index] -= p * np.log2(p)
        return Hda, Ha

c45_tree = C45_tree(data, label, [i for i in range(4)], 0.1)
prediction = c45_tree.root.predict(target)
print('Target belong %s' % prediction)

python代码5.1例题CART算法实现

import numpy as np

class Tree(object):
    def __init__(self,node_type, Class = None, feature_index = None, feature = None):
        self.node_type = node_type
        self.dict = {}
        self.Class = Class
        self.feature_index = feature_index
        self.feature = feature

    def add_tree(self,val,tree):
        self.dict[val] = tree

    def predict(self,features):
        if self.node_type == 'leaf':
            return self.Class
        if features[self.feature_index] == self.feature:
            tree = self.dict[self.feature]
        else:
            tree = self.dict[-1]
        return tree.predict(features)

class Id3_tree(object):
    def __init__(self, data, label, features):
        self.leaf = 'leaf'
        self.internal = 'internal'
        self.root = self.__build(data, label, features)

    def __build(self, data, labels,features):
        label_kinds = np.unique(labels)
        if len(np.unique(label_kinds)) == 1:
            return Tree(self.leaf, label_kinds[0])
        features_num = len(features)
        if features_num == 0:
            return Tree(self.leaf, label_kinds[0])

        Ga = self.__caclulate_ga(data,labels,features_num)
        ga_fea_min = min(Ga[0])
        fea_local = list(Ga[0]).index(ga_fea_min)
        ga_fea_index = 0
        for dx, i in enumerate(Ga[1:]):
            ga_fea_min_tmp = min(i)
            if ga_fea_min_tmp < ga_fea_min:
                fea_local = list(i).index(ga_fea_min_tmp)
                ga_fea_min = ga_fea_min_tmp
                ga_fea_index = dx + 1
        data_tmp = np.hstack((data[:, :ga_fea_index], data[:, ga_fea_index + 1:]))
        sub_features = list(filter(lambda x: x != ga_fea_index, features))
        feature_s = np.unique(data[:, ga_fea_index])
        tree = Tree(self.internal, feature_index=features[ga_fea_index], feature=feature_s[fea_local])
        dx_y = np.where(data[:, ga_fea_index] == feature_s[fea_local])
        sub_tree = self.__build(data_tmp[dx_y], labels[dx_y], sub_features)
        tree.add_tree(feature_s[fea_local], sub_tree)
        dx_n = np.where(data[:, ga_fea_index] != feature_s[fea_local])
        sub_tree = self.__build(data_tmp[dx_n], labels[dx_n], sub_features)
        tree.add_tree(-1, sub_tree)

        return tree

    def __caclulate_q(self, labels):
        label_kinds = np.unique(labels)
        q = 0
        for label in label_kinds:
            count = list(labels).count(label)
            p = float(count) / float(len(labels))
            q += p * (1 - p)
        return q

    def __caclulate_ga(self, data, labels, features_num):
        Ga = []
        for feature_index in range(features_num):
            feature_s = np.unique(data[:, feature_index])
            Gai = np.zeros(len(feature_s))
            for index, feature in enumerate(feature_s):
                dx_y = np.where(data[:, feature_index] == feature)
                p = float(len(dx_y[0])) / float(len(labels))
                q_y = self.__caclulate_q(labels[dx_y])
                dx_n = np.where(data[:, feature_index] != feature)
                q_n = self.__caclulate_q(labels[dx_n])
                dx = np.where(data[:, feature_index] == feature)
                Gai[index] += (p * q_y + (1 - p) * q_n)
            Ga.append(Gai)
        return Ga

id3_tree = Id3_tree(data, label, [i for i in range(4)])
prediction = id3_tree.root.predict(target)
print('Target belong %s' % prediction)

sklearn代码所用数据为kaggle中mnist数据,将特征PCA至六维

# -*- coding: utf-8 -*-
"""
使用sklearn实现的DT算法进行分类的一个实例,
使用数据集是Kaggle数字手写体数据库
"""
import os
import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.decomposition import PCA

# 加载数据集
def load_data(filename, n, mode):
    data_pd = pd.read_csv(filename)
    data = np.asarray(data_pd)
    pca = PCA(n_components=n)
    if not mode == 'test':
        dateset = pca.fit_transform(data[:, 1:])
        return dateset, data[:, 0]
    else:
        dateset = pca.fit_transform(data)
        return dateset, 1

def main(train_data_path, test_data_path, n_dim):
    train_data, train_label = load_data(train_data_path, n_dim, 'train')
    print("Train set :" + repr(len(train_data)))
    test_data, _ = load_data(test_data_path, n_dim, 'test')
    print("Test set :" + repr(len(test_data)))
    dt = tree.DecisionTreeClassifier()
    # 训练数据集
    dt.fit(train_data, train_label)
    # 训练准确率
    score = dt.score(train_data, train_label)
    print(">Training accuracy = " + repr(score))
    predictions = []
    for index in range(len(test_data)):
        # 预测
        result = dt.predict([test_data[index]])
        # 预测,返回概率数组
        predict2 = dt.predict_proba([test_data[index]])
        predictions.append([index + 1, result[0]])
        print(">Index : %s, predicted = %s   p%s" % (index + 1, result[0], predict2))
    columns = ['ImageId', 'Label']
    save_file = pd.DataFrame(columns=columns, data=predictions)
    save_file.to_csv('m.csv', index=False, encoding="utf-8")

if __name__ == "__main__":
    train_data_path = 'train.csv'
    test_data_path = 'train.csv'
    n_dim = 6
    main(train_data_path, test_data_path, n_dim)

课后习题

喜欢点赞关注哈

你可能感兴趣的:(统计学习方法 李航 决策树模型 python sklearn 实现 及课后习题)