- 【人工智能面经第五期:模型训练与优化核心面试深度问答】
码上有前
PytorchPython深度学习人工智能面试职场和发展
作者:“码上有前”文章简介:人工智能面经欢迎小伙伴们点赞、收藏⭐、留言模型训练与优化核心面试深度问答摘要围绕模型训练与优化的训练技巧(正则化、迁移学习)和数据工程(数据增强、标注质量)展开,通过20个关键问题,解析正则化协同策略、迁移学习适配场景、数据增强实践等核心要点,助力读者掌握人工智能与计算机视觉岗位面试中模型训练优化的知识体系,明晰技术原理与实际应用的关联。目录训练技巧-正则化策略相关问题
- 【深度学习第六期深度学习中的归一化与正则化技术:原理、实践与应用】
码上有前
Python深度学习Pytorch深度学习人工智能cnn
作者:“码上有前”文章简介:深度学习欢迎小伙伴们点赞、收藏⭐、留言深度学习中的归一化与正则化技术:原理、实践与应用摘要:本文深入探讨深度学习中批量归一化(BN)、层归一化(LN)、标准化以及正则化等关键技术。详细阐述它们的基本原理,包括如何调整数据分布、控制模型复杂度等;通过丰富的实例和对应代码,展示在不同网络架构中这些技术的具体实现方式,以及对模型训练和性能的影响;同时,对比分析各项技术的特点和
- 【机器学习笔记Ⅰ】13 正则化代价函数
正则化代价函数(RegularizedCostFunction)详解正则化代价函数是机器学习中用于防止模型过拟合的核心技术,通过在原始代价函数中添加惩罚项,约束模型参数的大小,从而提高泛化能力。以下是系统化的解析:1.为什么需要正则化?过拟合问题:当模型过于复杂(如高阶多项式回归、深度神经网络)时,可能完美拟合训练数据但泛化性能差。解决方案:在代价函数中增加对参数的惩罚,抑制不重要的特征权重。2.
- CHAIN(GAN的一种)训练自己的数据集
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络深度学习pytorch算法
简介简介:作者针对数据有限场景下GANs训练中的判别器过拟合问题,提出了CHAIN(Lipschitz连续性约束归一化)方法。作者首先从理论角度分析了GAN泛化误差,发现减少判别器权重梯度范数对提升泛化能力至关重要。然后深入研究了批归一化(BN)在GAN判别器中应用困难的根本原因,通过理论分析证明BN的中心化和缩放步骤会导致梯度爆炸。基于这些发现,CHAIN设计了两个核心模块:用零均值正则化替代中
- 【AI大模型面试八股文】大模型训练中如何应对灾难性遗忘问题?
一叶千舟
AI大模型应用【八股文】人工智能深度学习
目录✅面试回答模板:一、什么是灾难性遗忘?举个通俗的例子:二、灾难性遗忘是怎么发生的?常见触发情境:三、我们为什么要关注灾难性遗忘?四、主流解决方案汇总✅1.固定部分参数(FeatureExtraction)✅2.正则化策略(Regularization)✅3.回放机制(Rehearsal/Replay)✅4.参数隔离(ParameterIsolation)✅5.使用提示学习(PromptLear
- 【Torch】nn.Dropout算法详解
油泼辣子多加
深度学习算法
1.定义nn.Dropout是PyTorch中用于防止神经网络过拟合的正则化层。其核心思想是在训练阶段随机“丢弃”(置零)部分神经元的输出,以减少网络对特定神经元的过度依赖;在推理阶段则保持所有神经元输出不变。2.输入与输出输入(Input)任意形状的浮点张量(如torch.float32、torch.float64等),常见于全连接层或卷积层的激活输出。输出(Output)与输入张量形状、dty
- 经典文生图的GAN模型-HDGAN介绍
这张生成的图像能检测吗
GAN系列生成对抗网络人工智能神经网络计算机视觉深度学习机器学习
简介简介:这篇论文提出了一种名为HDGAN(Hierarchically-nestedDiscriminatorsGAN)的新方法,用于解决文本到图像合成这一挑战性任务。该方法的主要创新点包括:分层嵌套对抗目标:在网络层次结构内部引入配套的分层嵌套对抗目标,正则化中层表示并辅助生成器训练单流生成器架构:提出可扩展的单流生成器架构,更好地适应联合鉴别器并将生成图像提升到高分辨率多目的对抗损失:采用多
- 【深度学习|学习笔记】如何在深度学习中使用 正则化技术 进行模型压缩、稀疏建模和迁移学习调优?
努力毕业的小土博^_^
机器学习基础算法优质笔记2深度学习学习笔记迁移学习人工智能机器学习
【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?文章目录【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?✅一、使用正则化进行模型压缩(ModelCompression)目标:方法:L1正则化促使权重稀疏化代码示例:后续压缩步骤
- 行为正则化与顺序策略优化结合的离线多智能体学习算法
离线多智能体强化学习(MARL)是一个新兴领域,目标是在从预先收集的数据集中学习最佳的多智能体策略。随着人工智能技术的发展,多智能体系统在诸如自动驾驶、智能家居、机器人协作以及智能调度决策等方面展现了巨大的应用潜力。但现有的离线MARL方法也面临很多挑战,仍存在不协调行为和分布外联合动作的问题。为了应对这些挑战,中山大学计算机学院、美团履约平台技术部开展了学术合作项目,并取得了一些的成果,希望分享
- 【深度学习|学习笔记】什么是正则化?如何理解正则化?L0、L1、L2正则化的起源、发展、原理、应用和对比详解,附代码。
努力毕业的小土博^_^
深度学习学习笔记深度学习学习笔记人工智能机器学习
【深度学习|学习笔记】什么是正则化?如何理解正则化?L0、L1、L2正则化的起源、发展、原理、应用和对比详解,附代码。【深度学习|学习笔记】什么是正则化?如何理解正则化?L0、L1、L2正则化的起源、发展、原理、应用和对比详解,附代码。文章目录【深度学习|学习笔记】什么是正则化?如何理解正则化?L0、L1、L2正则化的起源、发展、原理、应用和对比详解,附代码。前言一、什么是正则化?为什么需要它?✅
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- 对SPM12的认识(二)
对SPM12的认识(二)四、SegmentDataChannel体积(Volumes)偏差正则化(Biasregularisation)偏差的FWHM(BiasFWHM)保存偏差校正图像(SaveBiasCorrected)Tissues组织组织概率图(Tissueprobabilitymap)高斯数(Num.Gaussians)原始组织(NativeTissue)变形组织(WarpedTissu
- 机器学习数据预处理:L2正则化(岭回归)
数字化与智能化
人工智能机器学习机器学习L2正则化岭回归
一、L2正则化介绍L2正则化,也称为岭回归(RidgeRegression),是一种常用的正则化方法。它在线性回归模型中通过在损失函数中添加L2范数的平方来惩罚模型的复杂度,从而防止过拟合。在线性回归中,我们的目标是最小化损失函数,通常以最小化均方误差来衡量。而L2正则化通过在损失函数中添加模型参数的L2范数的平方来进行正则化。L2范数是指模型参数的平方和的开方。正则化惩罚的目标是使模型参数尽量接
- 基于Split Bregman算法的稀疏图像重建(附带Matlab代码)
代码创造者
算法matlab人工智能Matlab
基于SplitBregman算法的稀疏图像重建(附带Matlab代码)SplitBregman算法是一种用于稀疏图像重建的优化算法,它能够有效地恢复受损的图像并保持重要的细节。本文将详细介绍SplitBregman算法的原理,并提供Matlab代码实现。算法原理SplitBregman算法是一种迭代算法,用于求解具有L1正则化项的优化问题。在图像重建中,我们希望找到一个稀疏表示来恢复受损的图像。该
- 基于沙猫群算法优化的正则化极限学习机(RELM)的回归预测
智能算法研学社(Jack旭)
#正则极限学习机(RELM)智能优化算法应用算法回归数据挖掘
基于沙猫群算法优化的正则化极限学习机(RELM)的回归预测文章目录基于沙猫群算法优化的正则化极限学习机(RELM)的回归预测1.RELM原理2.预测问题求解3.基于沙猫群算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN个训练样
- 基于战争策略算法优化的正则化极限学习机(RELM)的回归预测
基于战争策略算法优化的正则化极限学习机(RELM)的回归预测文章目录基于战争策略算法优化的正则化极限学习机(RELM)的回归预测1.RELM原理2.预测问题求解3.基于战争策略算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN个
- 嵌入式学习-暑假学习总规划-day6
此文章为本人暑期学习计划,目标是在暑假学习吴恩达的机器学习,pytorch的使用,yolov8的使用,STM32的开发。在八月底九月初的总目标是在单片机上部署一个关于计算机视觉的轻量化AI。时间段学习任务目标成果6月17日-6月30日吴恩达监督学习课程含线性回归、逻辑回归、神经网络基础完成课程视频+习题,理解训练流程、损失函数、过拟合、正则化7月1日-7月10日PyTorch框架入门学习张量、自动
- 智能光学计算成像技术前沿体系解析
m0_75133639
光电光学成像光子学生物医学材料科学计算成像技术全息成像研究生
当前光学成像领域正经历以人工智能为驱动的范式变革。本知识体系涵盖以下核心模块:基础理论层从计算成像物理模型(含波前分析、图像传感器噪声建模)切入,建立光学-算法联合优化理论框架,重点解析正则化逆问题求解(如ADMM算法)与神经表示(NeuralRepresentations)等前沿数学工具。AI融合层深度剖析深度学习在成像中的革新应用:端到端光学设计:通过可微光学模型(衍射/折射/复杂透镜)实现硬
- AI模型的泛化性的第一性原理是什么?
mao_feng
人工智能
目录**一、泛化性的第一性原理:统计学习理论的核心****1.独立同分布假设(IID)是泛化的基础****2.泛化误差:理论本质的数学刻画****3.模型复杂度与样本量的权衡****二、实现泛化的核心机制:正则化与隐式约束****1.显式正则化:复杂度惩罚****2.隐式正则化:优化过程的泛化诱导****3.数据层面的泛化增强****三、深度学习的特殊性:过参数化与泛化的悖论****1.“双下降曲
- 基于哈里斯鹰算法优化的正则化极限学习机(RELM)的回归预测
智能算法研学社(Jack旭)
#正则极限学习机(RELM)智能优化算法应用算法回归数据挖掘
基于哈里斯鹰算法优化的正则化极限学习机(RELM)的回归预测文章目录基于哈里斯鹰算法优化的正则化极限学习机(RELM)的回归预测1.RELM原理2.预测问题求解3.基于哈里斯鹰算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN个
- 线性回归讲解L1和L2正则化
XiaoQiong.Zhang
Datamining人工智能机器学习数据挖掘
假设我们有一个线性回归问题:用房屋的面积(size)和房龄(age)两个特征来预测房价(price)。特征:size(面积,平方米),age(房龄,年)目标:price(价格,万元)1.没有正则化的普通线性回归(最容易过拟合)模型的公式是:预测价格=w1*size+w2*age+b其中w1和w2是我们要学习的权重(也叫系数),b是偏置项(也叫截距)。模型的损失函数通常是最小均方误差:MSE=(1/
- 机器学习中的正则化(Regularization)详解
DuHz
机器学习人工智能信息与通信概率论信号处理
机器学习中的正则化(Regularization)详解正则化的本质:为什么需要它?想象一下,你正在学习一门新的语言,如果你把遇到的每一个句子都完全背诵下来,你可能在重复那些句子时表现完美,但面对新的句子时却束手无策。这就是机器学习中"过拟合"的本质。正则化就像是告诉模型"不要记住每个细节,而要学会概括规律"的一种机制。从数学角度看,正则化通过在原始损失函数中添加一个惩罚项来实现这个目标。标准的正则
- Pytorch 之torch.nn进阶第1关:正则化
ad_m1n
educoder人工智能答案深度学习pytorch神经网络
有偿提供CS的人工智能/网络空间安全方向的大学生课程设计、算法设计、项目设计的思路及实现指导;竞赛PPT、项目申报书等撰写润色等。经过“Pytorch之torch.nn初探“实训的学习,想必同学们对torch.nn有了一个初步的认识。接下来,本实训将介绍更多内容帮助同学们运用神经网络的特性。任务描述本关任务:本关提供了一个Variable类型的变量input,要求利用BatchNorm1d创建一个
- 头歌之动手学人工智能-Pytorch 之torch.nn进阶
摸鱼界在逃劳模
人工智能pytorchpython
目录第1关:正则化任务描述编程要求测试说明精神的浩瀚,想象的活跃,心灵的勤奋,就是天才。——狄德罗开始你的任务吧,祝你成功!第2关:损失函数任务描述编程要求测试说明天才,就其本质而说,只不过是一种对事业、对工作过盛的热爱而已。——高尔基开始你的任务吧,祝你成功!第3关:距离函数任务描述编程要求测试说明有了精神的实验和观测作为研究的依据,想像力便成为自然科学理论的设计师。——廷德尔开始你的任务吧,祝
- 深度学习基础知识总结
1.BatchNorm2d加速收敛:BatchNormalization可以使每层的输入保持较稳定的分布(接近标准正态分布),减少梯度更新时的震荡问题,从而加快模型训练速度。减轻过拟合:批归一化引入了轻微的正则化效果,因为它依赖于mini-batch中的统计信息,这种方式可以减少对单个样本的过度拟合。提高模型性能:在训练过程中,BatchNormalization通过动态调整激活值的分布,让模型更
- 【深度学习-Day 26】正则化神器 Dropout:随机失活,模型泛化的“保险丝”
吴师兄大模型
深度学习入门到精通深度学习人工智能pythonpytorch开发语言正则化dropoutLLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【额.......】如何防止过拟合?
努力努力再努力呐
pythonPyTorchRAG机器学习aipython大模型
防止过拟合是机器学习模型优化的核心目标之一。以下是防止过拟合的一些关键方法(早停、剪枝、正则化、增加样本、批量归一化、控制模型复杂度)的系统性解决方案,包含原理、实现细节与最佳实践:一、早停法(EarlyStopping)原理通过监控验证集性能,在模型开始过拟合训练数据时提前终止训练,保留泛化能力最强的参数状态。实现步骤划分数据集:将数据分为训练集、验证集(如80%-20%)。监控指标:选择验证集
- 基于卷积神经网络的 Fashionminsit 数据集分类
ʚɞ 长腿欧巴
cnn分类人工智能
实验目的1.理解卷积神经网络(CNN)。2.掌握数据预处理和增强技术:学习如何通过数据增强技术(如旋转、缩放、剪切等)来增加模型的泛化能力,减少过拟合。3.应用正则化技术:通过实验,掌握Dropout、L2正则化等技术在卷积神经网络中的应用,以降低模型的过拟合风险。4.优化模型性能:通过调整网络结构和超参数(如卷积层数量、卷积核大小、池化层、激活函数等),优化模型的准确率。5.理解过拟合现象:通过
- 模型评估与模型参数选择:机器学习实践的关键步骤
沐秋子
机器学习人工智能
在机器学习的海洋中,构建一个模型仅仅是冰山一角。真正的挑战在于如何确保这个模型能够准确地预测未知数据,并且拥有最优的性能表现。这就涉及到了两个至关重要的环节:模型评估和模型参数选择。本文将带您深入了解这两个概念,并介绍一些实用的技巧和方法。目录1.模型评估1.1训练误差与泛化误差1.2过拟合与欠拟合1.3交叉验证1.4正则化2.模型参数选择3.总结与实用建议1.模型评估1.1训练误差与泛化误差模型
- 机器学习专栏(36):逻辑回归与Softmax回归全解析(附完整代码与可视化)
Sonal_Lynn
人工智能专题机器学习逻辑回归回归
目录一、逻辑回归:概率世界的"温度计"1.1核心原理:从线性到概率的魔法转换1.2Sigmoid函数:概率转换的核心引擎1.3实战案例:鸢尾花二分类二、模型训练:损失函数的艺术2.1对数损失函数解析2.2正则化实战技巧三、Softmax回归:多分类的终极武器3.1数学原理深度解析3.2多分类实战技巧四、工业级应用指南4.1特征工程黄金法则4.2模型评估矩阵4.3超参数调优模板五、避坑指南:常见误区
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin