本文参考以下链接,如有侵权,联系删除
参考文献
GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛,通常被用于多分类、点击率预测、搜索排序等任务;在各种数据挖掘竞赛中也是致命武器,据统计Kaggle上的比赛有一半以上的冠军方案都是基于GBDT。而LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。
常用的机器学习算法,例如神经网络等算法,都可以以mini-batch的方式训练,训练数据的大小不会受到内存限制。而GBDT在每一次迭代的时候,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。尤其面对工业级海量的数据,普通的GBDT算法是不能满足其需求的。
LightGBM提出的主要原因就是为了解决GBDT在海量数据遇到的问题,让GBDT可以更好更快地用于工业实践。
在LightGBM提出之前,最有名的GBDT工具就是XGBoost了,它是基于预排序方法的决策树算法。
这种构建决策树的算法基本思想是:首先,对所有特征都按照特征的数值进行预排序。其次,在遍历分割点的时候用O(#data)的代价找到一个特征上的最好分割点。最后,在找到一个特征的最好分割点后,将数据分裂成左右子节点。
这样的预排序算法的优点是能精确地找到分割点。但是缺点也很明显:
为了避免上述XGBoost的缺陷,并且能够在不损害准确率的条件下加快GBDT模型的训练速度,lightGBM在传统的GBDT算法上进行了如下优化:
直方图算法的基本思想是:先把连续的浮点特征值离散化成 k k k个整数,同时构造一个宽度为 k k k 的直方图。在遍历数据的时候,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点。
直方图算法简单理解为:首先确定对于每一个特征需要多少个箱子(bin)并为每一个箱子分配一个整数;然后将浮点数的范围均分成若干区间,区间个数与箱子个数相等,将属于该箱子的样本数据更新为箱子的值;最后用直方图(#bins)表示。看起来很高大上,其实就是直方图统计,将大规模的数据放在了直方图中。
特征离散化具有很多优点,如存储方便、运算更快、鲁棒性强、模型更加稳定等。对于直方图算法来说最直接的有以下两个优点:
由于特征被离散化后,找到的并不是很精确的分割点,所以会对结果产生影响。但在不同的数据集上的结果表明,离散化的分割点对最终的精度影响并不是很大,甚至有时候会更好一点。原因是决策树本来就是弱模型,分割点是不是精确并不是太重要;较粗的分割点也有正则化的效果,可以有效地防止过拟合;即使单棵树的训练误差比精确分割的算法稍大,但在梯度提升(Gradient Boosting)的框架下没有太大的影响。
一个叶子的直方图可以由它的父亲节点的直方图与它兄弟的直方图做差得到,在速度上可以提升一倍。通常构造直方图时,需要遍历该叶子上的所有数据,但直方图做差仅需遍历直方图的k个桶。在实际构建树的过程中,LightGBM还可以先计算直方图小的叶子节点,然后利用直方图做差来获得直方图大的叶子节点,这样就可以用非常微小的代价得到它兄弟叶子的直方图。
注意:XGBoost 在进行预排序时只考虑非零值进行加速,而 LightGBM 也采用类似策略:只用非零特征构建直方图。
抛弃了大多数GBDT工具使用的按层生长 (level-wise) 的决策树生长策略,而使用了带有深度限制的按叶子生长 (leaf-wise) 算法.
XGBoost 采用 Level-wise 的增长策略,该策略遍历一次数据可以同时分裂同一层的叶子,容易进行多线程优化,也好控制模型复杂度,不容易过拟合。但实际上Level-wise是一种低效的算法,因为它不加区分的对待同一层的叶子,实际上很多叶子的分裂增益较低,没必要进行搜索和分裂,因此带来了很多没必要的计算开销。
LightGBM采用Leaf-wise的增长策略,该策略每次从当前所有叶子中,找到分裂增益最大的一个叶子,然后分裂,如此循环。因此同Level-wise相比,Leaf-wise的优点是:在分裂次数相同的情况下,Leaf-wise可以降低更多的误差,得到更好的精度;Leaf-wise的缺点是:可能会长出比较深的决策树,产生过拟合。因此LightGBM会在Leaf-wise之上增加了一个最大深度的限制,在保证高效率的同时防止过拟合。
Gradient-based One-Side Sampling 应该被翻译为单边梯度采样(GOSS)。GOSS算法从减少样本的角度出发,排除大部分小梯度的样本,仅用剩下的样本计算信息增益,它是一种在减少数据量和保证精度上平衡的算法。
AdaBoost中,样本权重是数据重要性的指标。然而在GBDT中没有原始样本权重,不能应用权重采样。幸运的是,我们观察到GBDT中每个数据都有不同的梯度值,对采样十分有用。即梯度小的样本,训练误差也比较小,说明数据已经被模型学习得很好了,直接想法就是丢掉这部分梯度小的数据。然而这样做会改变数据的分布,将会影响训练模型的精确度,为了避免此问题,提出了GOSS算法。
GOSS是一个样本的采样算法,目的是丢弃一些对计算信息增益没有帮助的样本留下有帮助的。根据计算信息增益的定义,梯度大的样本对信息增益有更大的影响。因此,GOSS在进行数据采样的时候只保留了梯度较大的数据,但是如果直接将所有梯度较小的数据都丢弃掉势必会影响数据的总体分布。所以,GOSS首先将要进行分裂的特征的所有取值按照绝对值大小降序排序(XGBoost一样也进行了排序,但是LightGBM 不用保存排序后的结果),选取绝对值最大的 a ∗ 100 % a * 100\% a∗100% 个数据。然后在剩下的较小梯度数据中随机选择 b ∗ 100 % b * 100\% b∗100% 个数据。接着将这 b ∗ 100 % b * 100\% b∗100% 个数据乘以一个常数 1 − a b \frac{1-a}{b} b1−a ,这样算法就会更关注训练不足的样本,而不会过多改变原数据集的分布。最后使用这 ( a + b ) ∗ 100 % (a+b) * 100\% (a+b)∗100% 个数据来计算信息增益。下图是GOSS的具体算法。
高维度的数据往往是稀疏的,这种稀疏性启发我们设计一种无损的方法来减少特征的维度。通常被捆绑的特征都是互斥的(即特征不会同时为非零值,像one-hot),这样两个特征捆绑起来才不会丢失信息。如果两个特征并不是完全互斥(部分情况下两个特征都是非零值),可以用一个指标对特征不互斥程度进行衡量,称之为冲突比率,当这个值较小时,我们可以选择把不完全互斥的两个特征捆绑,而不影响最后的精度。互斥特征捆绑算法指出如果将一些特征进行融合绑定,则可以降低特征数量。这样在构建直方图时的时间复杂度从 O ( d a t a ∗ f e a t u r e ) O(data * feature) O(data∗feature) 变为 O ( d a t a ∗ b u n d l e ) O(data * bundle) O(data∗bundle) ,这里 b o u n d l e boundle boundle 指特征融合绑定后特征包的个数,且 b o u n d l e boundle boundle 远小于 f e a t u r e feature feature 。
将相互独立的特征进行绑定是一个 NP-Hard 问题,LightGBM的EFB算法将这个问题转化为图着色的问题来求解,将所有的特征视为图的各个顶点,将不是相互独立的特征用一条边连接起来,边的权重就是两个相连接的特征的总冲突值,这样需要绑定的特征就是在图着色问题中要涂上同一种颜色的那些点(特征)。此外,我们注意到通常有很多特征,尽管不是100%相互排斥,但也很少同时取非零值。 如果我们的算法可以允许一小部分的冲突,我们可以得到更少的特征包,进一步提高计算效率。
具体步骤可以总结如下:
特征合并算法,其关键在于原始特征能从合并的特征中分离出来。绑定几个特征在同一个bundle里需要保证绑定前的原始特征的值可以在bundle中识别,考虑到histogram-based算法将连续的值保存为离散的bins,我们可以使得不同特征的值分到bundle中的不同bin(箱子)中,这可以通过在特征值中加一个偏置常量来解决。比如,我们在bundle中绑定了两个特征A和B,A特征的原始取值为区间[0,10),B特征的原始取值为区间[0,20),我们可以在B特征的取值上加一个偏置常量10,将其取值范围变为[10,30),绑定后的特征取值范围为 [0, 30),这样就可以放心的融合特征A和B了。
实际上大多数机器学习工具都无法直接支持类别特征,一般需要把类别特征,通过 one-hot 编码,转化到多维的0/1特征,降低了空间和时间的效率。但我们知道对于决策树来说并不推荐使用 one-hot 编码,尤其当类别特征中类别个数很多的情况下,会存在以下问题:
而类别特征的使用在实践中是很常见的。且为了解决one-hot编码处理类别特征的不足,LightGBM优化了对类别特征的支持,可以直接输入类别特征,不需要额外的0/1展开。LightGBM采用 many-vs-many 的切分方式将类别特征分为两个子集,实现类别特征的最优切分。
算法流程如下图所示,在枚举分割点之前,先把直方图按照每个类别对应的label均值进行排序;然后按照排序的结果依次枚举最优分割点。从下图可以看到, S u m ( y ) C o u n t ( y ) \frac{Sum(y)}{Count(y)} Count(y)Sum(y) 为类别的均值。当然,这个方法很容易过拟合,所以LightGBM里面还增加了很多对于这个方法的约束和正则化。
相比0/1展开的方法,使用LightGBM支持的类别特征可以使训练速度加速8倍,并且精度一致。更重要的是,LightGBM是第一个直接支持类别特征的GBDT工具。
特征并行的主要思想是不同机器在不同的特征集合上分别寻找最优的分割点,然后在机器间同步最优的分割点。XGBoost使用的就是这种特征并行方法。这种特征并行方法有个很大的缺点:就是对数据进行垂直划分,每台机器所含数据不同,然后使用不同机器找到不同特征的最优分裂点,划分结果需要通过通信告知每台机器,增加了额外的复杂度。
LightGBM 则不进行数据垂直划分,而是在每台机器上保存全部训练数据,在得到最佳划分方案后可在本地执行划分而减少了不必要的通信。具体过程如下图所示。
传统的数据并行策略主要为水平划分数据,让不同的机器先在本地构造直方图,然后进行全局的合并,最后在合并的直方图上面寻找最优分割点。这种数据划分有一个很大的缺点:通讯开销过大。
LightGBM在数据并行中使用分散规约 (Reduce scatter) 把直方图合并的任务分摊到不同的机器,降低通信和计算,并利用直方图做差,进一步减少了一半的通信量。具体过程如下图所示。
基于投票的数据并行则进一步优化数据并行中的通信代价,使通信代价变成常数级别。在数据量很大的时候,使用投票并行的方式只合并部分特征的直方图从而达到降低通信量的目的,可以得到非常好的加速效果。具体过程如下图所示。
大致步骤为两步:
XGBoost对cache优化不友好,如下图所示。在预排序后,特征对梯度的访问是一种随机访问,并且不同的特征访问的顺序不一样,无法对cache进行优化。同时,在每一层长树的时候,需要随机访问一个行索引到叶子索引的数组,并且不同特征访问的顺序也不一样,也会造成较大的cache miss。为了解决缓存命中率低的问题,XGBoost 提出了缓存访问算法进行改进。
而 LightGBM 所使用直方图算法对 Cache 天生友好:
这部分主要总结下 LightGBM 相对于 XGBoost 的优点,从内存和速度两方面进行介绍。
(1)速度更快
(2)内存更小