5.Flink实时项目之业务数据准备

1. 流程介绍

在上一篇文章中,我们已经把客户端的页面日志,启动日志,曝光日志分别发送到kafka对应的主题中。在本文中,我们将把业务数据也发送到对应的kafka主题中。

通过maxwell采集业务数据变化,相当于是ods数据,把采集的数据发送到kafka的topic(ods_base_db_m)中,然后flink从kafka消费数据,这个过程有维度数据,就放到hbase中,其他事实数据再发送给kafka作为dwd层。flink消费kafka数据可以做一些简单的ETL处理,比如过滤空值,长度限制。

2. 消费kafka数据及ETL操作

项目地址:https://github.com/zhangbaohpu/gmall-flink-parent/tree/master/gmall-realtime

在模块 gmall-realtime 的dwd包下创建类:BaseDbTask.java

具体步骤就看代码了

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.zhangbao.gmall.realtime.utils.MyKafkaUtil;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.LocalStreamEnvironment;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
​
/**
 * 从kafka读取业务数据
 * @author: zhangbao
 * @date: 2021/8/15 21:10
 * @desc:
 **/
public class BaseDbTask {
    public static void main(String[] args) {
        //1.获取flink环境
        LocalStreamEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
        //设置并行度
        env.setParallelism(4);
        //设置检查点
        env.enableCheckpointing(5000, CheckpointingMode.EXACTLY_ONCE);
        env.getCheckpointConfig().setCheckpointTimeout(60000);
        env.setStateBackend(new FsStateBackend("hdfs://hadoop101:9000/gmall/flink/checkpoint/baseDbApp"));
        //指定哪个用户读取hdfs文件
        System.setProperty("HADOOP_USER_NAME","zhangbao");
​
        //2.从kafka获取topic数据
        String topic = "ods_base_db_m";
        String group = "base_db_app_group";
        FlinkKafkaConsumer kafkaSource = MyKafkaUtil.getKafkaSource(topic, group);
        DataStreamSource jsonStrDs = env.addSource(kafkaSource);
​
        //3.对数据进行json转换
        SingleOutputStreamOperator jsonObjDs = jsonStrDs.map(jsonObj -> JSON.parseObject(jsonObj));
​
        //4.ETL, table不为空,data不为空,data长度不能小于3
        SingleOutputStreamOperator filterDs = jsonObjDs.filter(jsonObject -> jsonObject.getString("table") != null
                && jsonObject.getJSONObject("data") != null
                && jsonObject.getString("data").length() > 3);
​
        filterDs.print("json str --->>");
​
        try {
            env.execute("base db task");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

3. 动态分流

由于MaxWell是把全部数据统一写入一个Topic中, 这样显然不利于日后的数据处理。所以需要把各个表拆开处理。但是由于每个表有不同的特点,有些表是维度表,有些表是事实表,有的表既是事实表在某种情况下也是维度表。

在实时计算中一般把维度数据写入存储容器,一般是方便通过主键查询的数据库比如HBase,Redis,MySQL 等。一般把事实数据写入流中,进行进一步处理,最终形成宽表。但是作为 Flink 实时计算任务,如何得知哪些表是维度表,哪些是事实表呢?而这些表又应该采集哪些字段呢?

我们可以将上面的内容放到某一个地方,集中配置。这样的配置不适合写在配置文件中,因为业务端随着需求变化每增加一张表,就要修改配置重启计算程序。所以这里需要一种动态配置方案,把这种配置长期保存起来,一旦配置有变化,实时计算可以自动感知。

这种可以有两个方案实现

  • 一种是用 Zookeeper 存储,通过 Watch 感知数据变化。

  • 另一种是用 mysql 数据库存储,周期性的同步或使用flink-cdc实时同步。

这里选择第二种方案,周期性同步,flink-cdc方式可自行尝试,主要是 mysql 对于配置数据初始化和维护管理,用 sql 都比较方便,虽然周期性操作时效性差一点,但是配置变化并不频繁。

所以就有了如下图:

5.Flink实时项目之业务数据准备_第1张图片

业务数据保存到Kafka 的主题中,维度数据保存到Hbase 的表中。

4. mysql配置

① 在 gmall-realtime 模块添加依赖



 org.projectlombok
 lombok
 1.18.12
 provided



 commons-beanutils
 commons-beanutils
 1.9.3



 com.google.guava
 guava
 29.0-jre


 mysql
 mysql-connector-java
 5.1.47

② 单独创建数据库gmall2021_realtime

create database gmall2021_realtime;
​
CREATE TABLE `table_process` (
`source_table` varchar(200) NOT NULL COMMENT '来源表',
`operate_type` varchar(200) NOT NULL COMMENT '操作类型 insert,update,delete',
`sink_type` varchar(200) DEFAULT NULL COMMENT '输出类型 hbase kafka',
`sink_table` varchar(200) DEFAULT NULL COMMENT '输出表(主题)',
`sink_columns` varchar(2000) DEFAULT NULL COMMENT '输出字段',
`sink_pk` varchar(200) DEFAULT NULL COMMENT '主键字段',
`sink_extend` varchar(200) DEFAULT NULL COMMENT '建表扩展',
PRIMARY KEY (`source_table`,`operate_type`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

③ 创建实体类

package com.zhangbao.gmall.realtime.bean;
import lombok.Data;
/**
 * @author: zhangbao
 * @date: 2021/8/22 13:06
 * @desc:
 **/
@Data
public class TableProcess {
    //动态分流 Sink 常量 改为小写和脚本一致
    public static final String SINK_TYPE_HBASE = "hbase";
    public static final String SINK_TYPE_KAFKA = "kafka";
    public static final String SINK_TYPE_CK = "clickhouse";
​
    //来源表
    private String sourceTable;
    //操作类型 insert,update,delete
    private String operateType;
    //输出类型 hbase kafka
    private String sinkType;
    //输出表(主题)
    private String sinkTable;
    //输出字段
    private String sinkColumns;
    //主键字段
    private String sinkPk;
    //建表扩展
    private String sinkExtend;
}

④ mysql工具类

package com.zhangbao.gmall.realtime.utils;
import com.google.common.base.CaseFormat;
import com.zhangbao.gmall.realtime.bean.TableProcess;
import org.apache.commons.beanutils.BeanUtils;
import org.apache.commons.lang.reflect.FieldUtils;
import java.sql.*;
import java.util.ArrayList;
import java.util.List;
/**
 * @author: zhangbao
 * @date: 2021/8/22 13:09
 * @desc:
 **/
public class MysqlUtil {
​
    private static final String DRIVER_NAME = "com.mysql.jdbc.Driver";
    private static final String URL = "jdbc:mysql://192.168.88.71:3306/gmall2021_realtime?characterEncoding=utf-8&useSSL=false&serverTimezone=GMT%2B8";
    private static final String USER_NAME = "root";
    private static final String USER_PWD = "123456";
​
    public static void main(String[] args) {
        String sql = "select * from table_process";
        List list = getList(sql, TableProcess.class, true);
        for (TableProcess tableProcess : list) {
            System.out.println(tableProcess.toString());
        }
    }
​
    public static  List getList(String sql,Class clz, boolean under){
        Connection conn = null;
        PreparedStatement ps = null;
        ResultSet rs = null;
        try {
            Class.forName(DRIVER_NAME);
            conn = DriverManager.getConnection(URL, USER_NAME, USER_PWD);
            ps = conn.prepareStatement(sql);
            rs = ps.executeQuery();
            List resultList = new ArrayList<>();
            ResultSetMetaData metaData = rs.getMetaData();
            int columnCount = metaData.getColumnCount();
            while (rs.next()){
                System.out.println(rs.getObject(1));
                T obj = clz.newInstance();
                for (int i = 1; i <= columnCount; i++) {
                    String columnName = metaData.getColumnName(i);
                    String propertyName = "";
                    if(under){
                        //指定数据库字段转换为驼峰命名法,guava工具类
                        propertyName = CaseFormat.LOWER_UNDERSCORE.to(CaseFormat.LOWER_CAMEL,columnName);
                    }
                   //通过guava工具类设置属性值
                    BeanUtils.setProperty(obj,propertyName,rs.getObject(i));
                }
                resultList.add(obj);
            }
            return resultList;
        } catch (Exception throwables) {
            throwables.printStackTrace();
            new RuntimeException("msql 查询失败!");
        } finally {
            if(rs!=null){
                try {
                    rs.close();
                } catch (SQLException throwables) {
                    throwables.printStackTrace();
                }
            }
            if(ps!=null){
                try {
                    ps.close();
                } catch (SQLException throwables) {
                    throwables.printStackTrace();
                }
            }
            if(conn!=null){
                try {
                    conn.close();
                } catch (SQLException throwables) {
                    throwables.printStackTrace();
                }
            }
        }
        return null;
    }
}

5. 程序分流

 

5.Flink实时项目之业务数据准备_第2张图片

如图定义一个mapFunction函数

  • 1.在open方法中初始化配置信息,并周期开启一个任务刷新配置

  • 2.在任务中根据配置创建数据表

  • 3.分流

主任务流程

package com.zhangbao.gmall.realtime.app.dwd;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.zhangbao.gmall.realtime.app.func.TableProcessFunction;
import com.zhangbao.gmall.realtime.bean.TableProcess;
import com.zhangbao.gmall.realtime.utils.MyKafkaUtil;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.LocalStreamEnvironment;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.OutputTag;
​
/**
 * 从kafka读取业务数据
 * @author: zhangbao
 * @date: 2021/8/15 21:10
 * @desc:
 **/
public class BaseDbTask {
    public static void main(String[] args) {
        //1.获取flink环境
        LocalStreamEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
        //设置并行度
        env.setParallelism(4);
        //设置检查点
        env.enableCheckpointing(5000, CheckpointingMode.EXACTLY_ONCE);
        env.getCheckpointConfig().setCheckpointTimeout(60000);
        env.setStateBackend(new FsStateBackend("hdfs://hadoop101:9000/gmall/flink/checkpoint/baseDbApp"));
        //指定哪个用户读取hdfs文件
        System.setProperty("HADOOP_USER_NAME","zhangbao");
​
        //2.从kafka获取topic数据
        String topic = "ods_base_db_m";
        String group = "base_db_app_group";
        FlinkKafkaConsumer kafkaSource = MyKafkaUtil.getKafkaSource(topic, group);
        DataStreamSource jsonStrDs = env.addSource(kafkaSource);
​
        //3.对数据进行json转换
        SingleOutputStreamOperator jsonObjDs = jsonStrDs.map(jsonObj -> JSON.parseObject(jsonObj));
​
        //4.ETL, table不为空,data不为空,data长度不能小于3
        SingleOutputStreamOperator filterDs = jsonObjDs.filter(jsonObject -> jsonObject.getString("table") != null
                && jsonObject.getJSONObject("data") != null
                && jsonObject.getString("data").length() > 3);
​
        //5.动态分流,事实表写会kafka,维度表写入hbase
        OutputTag hbaseTag = new OutputTag(TableProcess.SINK_TYPE_HBASE){};
        //创建自定义mapFunction函数
        SingleOutputStreamOperator kafkaTag = filterDs.process(new TableProcessFunction(hbaseTag));
​
        DataStream hbaseDs = kafkaTag.getSideOutput(hbaseTag);
​
        filterDs.print("json str --->>");
​
        try {
            env.execute("base db task");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

创建TableProcessFunction自定义任务

这里包括上面说的四个步骤

  • 初始化并周期读取配置数据

  • 执行每条数据

  • 过滤字段

  • 标记数据流向,根据配置写入对应去向,维度数据就写入hbase,事实数据就写入kafka

package com.zhangbao.gmall.realtime.app.func;
import com.alibaba.fastjson.JSONObject;
import com.zhangbao.gmall.realtime.bean.TableProcess;
import com.zhangbao.gmall.realtime.common.GmallConfig;
import com.zhangbao.gmall.realtime.utils.MysqlUtil;
import lombok.extern.log4j.Log4j2;
import org.apache.commons.lang3.StringUtils;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.util.*;
​
/**
 * @author: zhangbao
 * @date: 2021/8/26 23:24
 * @desc:
 **/
@Log4j2(topic = "gmall-logger")
public class TableProcessFunction extends ProcessFunction {
    //定义输出流标记
    private OutputTag outputTag;
    //定义配置信息
    private Map tableProcessMap = new HashMap<>();
    //在内存中存放已经创建的表
    Set existsTable = new HashSet<>();
    //phoenix连接对象
    Connection con = null;
​
    public TableProcessFunction(OutputTag outputTag) {
        this.outputTag = outputTag;
    }
​
    //只执行一次
    @Override
    public void open(Configuration parameters) throws Exception {
        //初始化配置信息
        log.info("查询配置表信息");
        //创建phoenix连接
        Class.forName("org.apache.phoenix.jdbc.PhoenixDriver");
        con = DriverManager.getConnection(GmallConfig.PHOENIX_SERVER);
        refreshDate();
        //启动一个定时器,每隔一段时间重新获取配置信息
        //delay:延迟5000执行,每隔5000执行一次
        Timer timer = new Timer();
        timer.schedule(new TimerTask() {
            @Override
            public void run() {
                refreshDate();
            }
        },5000,5000);
    }
​
    //每进来一个元素,执行一次
    @Override
    public void processElement(JSONObject jsonObj, Context context, Collector collector) throws Exception {
        //获取表的修改记录
        String table = jsonObj.getString("table");
        String type = jsonObj.getString("type");
        JSONObject data = jsonObj.getJSONObject("data");
        if(type.equals("bootstrap-insert")){
            //maxwell更新历史数据时,type类型是bootstrap-insert
            type = "insert";
            jsonObj.put("type",type);
        }
        if(tableProcessMap != null && tableProcessMap.size()>0){
            String key = table + ":" + type;
            TableProcess tableProcess = tableProcessMap.get(key);
            if(tableProcess!=null){
                //数据发送到何处,如果是维度表,就发送到hbase,如果是事实表,就发送到kafka
                String sinkType = tableProcess.getSinkType();
                jsonObj.put("sink_type",sinkType);
                String sinkColumns = tableProcess.getSinkColumns();
                //过滤掉不要的数据列,sinkColumns是需要的列
                filterColumns(data,sinkColumns);
​
            }else {
                log.info("no key {} for mysql",key);
            }
            if(tableProcess!=null && tableProcess.getSinkType().equals(TableProcess.SINK_TYPE_HBASE)){
                //根据sinkType判断,如果是维度表就分流,发送到hbase
                context.output(outputTag,jsonObj);
            }else if(tableProcess!=null && tableProcess.getSinkType().equals(TableProcess.SINK_TYPE_KAFKA)){
                //根据sinkType判断,如果是事实表就发送主流,发送到kafka
                collector.collect(jsonObj);
            }
​
        }
    }
​
    //过滤掉不要的数据列,sinkColumns是需要的列
    private void filterColumns(JSONObject data, String sinkColumns) {
        String[] cols = sinkColumns.split(",");
        //转成list集合,用于判断是否包含需要的列
        List columnList = Arrays.asList(cols);
        Set> entries = data.entrySet();
        Iterator> iterator = entries.iterator();
        while (iterator.hasNext()){
            Map.Entry next = iterator.next();
            String key = next.getKey();
            //如果不包含就删除不需要的列
            if(!columnList.contains(key)){
                iterator.remove();
            }
        }
    }
​
    //读取配置信息,并创建表
    private void refreshDate() {
        List processList = MysqlUtil.getList("select * from table_process", TableProcess.class, true);
        for (TableProcess tableProcess : processList) {
            String sourceTable = tableProcess.getSourceTable();
            String operateType = tableProcess.getOperateType();
            String sinkType = tableProcess.getSinkType();
            String sinkTable = tableProcess.getSinkTable();
            String sinkColumns = tableProcess.getSinkColumns();
            String sinkPk = tableProcess.getSinkPk();
            String sinkExtend = tableProcess.getSinkExtend();
            String key = sourceTable+":"+operateType;
            tableProcessMap.put(key,tableProcess);
            //在phoenix创建表
            if(TableProcess.SINK_TYPE_HBASE.equals(sinkType) && operateType.equals("insert")){
                boolean noExist = existsTable.add(sinkTable);//true则表示没有创建表
                if(noExist){
                    createTable(sinkTable,sinkColumns,sinkPk,sinkExtend);
                }
            }
        }
    }
​
    //在phoenix中创建表
    private void createTable(String table, String columns, String pk, String ext) {
        if(StringUtils.isBlank(pk)){
            pk = "id";
        }
        if(StringUtils.isBlank(ext)){
            ext = "";
        }
        StringBuilder sql = new StringBuilder("create table if not exists " + GmallConfig.HBASE_SCHEMA + "." + table +"(");
        String[] split = columns.split(",");
        for (int i = 0; i < split.length; i++) {
            String field = split[i];
            if(pk.equals(field)){
                sql.append(field + " varchar primary key ");
            }else {
                sql.append("info." + field +" varchar ");
            }
            if(i < split.length-1){
                sql.append(",");
            }
        }
        sql.append(")").append(ext);
        //创建phoenix表
        PreparedStatement ps = null;
        try {
            log.info("创建phoenix表sql - >{}",sql.toString());
            ps = con.prepareStatement(sql.toString());
            ps.execute();
        } catch (SQLException throwables) {
            throwables.printStackTrace();
        }finally {
            if(ps!=null){
                try {
                    ps.close();
                } catch (SQLException throwables) {
                    throwables.printStackTrace();
                    throw new RuntimeException("创建phoenix表失败");
                }
            }
        }
        if(tableProcessMap == null || tableProcessMap.size()==0){
            throw new RuntimeException("没有从配置表中读取配置信息");
        }
    }
}

6. 重启策略

flink程序在运行时,有错误会抛出异常,程序就停止了,但当开始checkpoint检查点时,flink重启策略就是开启的,如果程序出现异常了,程序就会一直重启,并且重启次数是Integer.maxValue,这个过程也看不到错误信息,是很不友好的。

flink可以设置重启策略,所以在我们开启checkpoint检查点时,设置不需要重启就可以看到错误信息了:

env.setRestartStrategy(RestartStrategies.noRestart());

下面我们测试一下。

package com.zhangbao.gmall.realtime.app.dwd;
​
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.zhangbao.gmall.realtime.app.func.TableProcessFunction;
import com.zhangbao.gmall.realtime.bean.TableProcess;
import com.zhangbao.gmall.realtime.utils.MyKafkaUtil;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.runtime.executiongraph.restart.RestartStrategy;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.LocalStreamEnvironment;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.OutputTag;
​
/**
 * 从kafka读取业务数据
 * @author: zhangbao
 * @date: 2021/8/15 21:10
 * @desc:
 **/
public class Test {
    public static void main(String[] args) {
        //1.获取flink环境
        LocalStreamEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
        //设置并行度
        env.setParallelism(4);
        //设置检查点
        env.enableCheckpointing(5000, CheckpointingMode.EXACTLY_ONCE);
        env.getCheckpointConfig().setCheckpointTimeout(60000);
        env.setStateBackend(new FsStateBackend("hdfs://hadoop101:9000/gmall/flink/checkpoint/baseDbApp"));
        //指定哪个用户读取hdfs文件
        System.setProperty("HADOOP_USER_NAME","zhangbao");
        //flink重启策略,
        // 如果开启上面的checkpoint,重启策略就是自动重启,程序有问题不会有报错,
        // 如果没有开启checkpoint,就不会自动重启,所以这里设置不需要重启,就可以查看错误信息
        env.setRestartStrategy(RestartStrategies.noRestart());
​
        //2.从kafka获取topic数据
        String topic = "ods_base_db_m";
        String group = "test_group";
        FlinkKafkaConsumer kafkaSource = MyKafkaUtil.getKafkaSource(topic, group);
        DataStreamSource jsonStrDs = env.addSource(kafkaSource);
​
        jsonStrDs.print("转换前-->");
        //3.对数据进行json转换
        SingleOutputStreamOperator jsonObjDs = jsonStrDs.map(jsonObj ->{
            System.out.println(4/0);
            JSONObject jsonObject = JSON.parseObject(jsonObj);
            return jsonObject;
        });
​
        jsonObjDs.print("转换后-->");
​
        try {
            env.execute("base db task");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

在程序对数据进行转换过程中,我们加了 System.out.println(4/0); 这样一行代码,肯定会抛出异常的。

5.Flink实时项目之业务数据准备_第3张图片

在设置不需要重启后,就可以看到错误信息了,当你把设置不需要重启一行代码注释掉,就会发现程序是一直在运行中的,并且没有任何错误信息。

在实际应用中,根据需要可以自行设置。

你可能感兴趣的:(5.Flink实时项目之业务数据准备)