[ACM_几何] Pipe

 
  
   本题大意:  给定一个管道上边界的拐点,管道宽为1,求一束光最远能照到的地方的X坐标,如果能照到终点,则输出...
  解题思路:  若想照的最远,则光线必过某两个拐点,因此用二分法对所有拐点对进行枚举,找出最远大值即可。
#include<iostream>

#include<cmath>

#include<string.h>

#include<string>

#include<cstdio>

#include<algorithm>

#include<iomanip>



using namespace std;

#define eps 1e-8

#define PI acos(-1.0)





//点和向量

struct Point{

    double x,y;

    Point(double x=0,double y=0):x(x),y(y){}

    void out(){cout<<"("<<x<<','<<y<<") ";}

};

typedef Point Vector;

Vector operator+(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}

Vector operator-(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}

Vector operator*(Vector a,double p){return Vector(a.x*p,a.y*p);}

Vector operator/(Vector a,double p){return Vector(a.x/p,a.y/p);}

bool operator<(const Vector& a,const Vector& b){return a.x<b.x||(a.x==b.x && a.y<b.y);}

int dcmp(double x){

    if(fabs(x)<eps)return 0;

    else return x<0 ? -1:1;

}

bool operator==(const Point& a,const Point& b){

    return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0;

}

double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//向量点积

double Length(Vector A){return sqrt(Dot(A,A));}//向量模长

double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));}//向量夹角

double Cross(Vector A,Vector B){return A.x*B.y-A.y*B.x;}

double Area2(Point A,Point B,Point C){return Cross(B-A,C-A);}//三角形面积的2倍

//绕起点逆时针旋转rad度

Vector Rotate(Vector A,double rad){          

    return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));

}

double torad(double jiao){return jiao/180*PI;}//角度转弧度

double tojiao(double ang){return ang/PI*180;}//弧度转角度 

//单位法向量

Vector Normal(Vector A){

    double L=Length(A);

    return Vector(-A.y/L,A.x/L);

}

//点和直线

struct Line{

    Point P;//直线上任意一点

    Vector v;//方向向量,他的左边对应的就是半平面

    double ang;//极角,即从x正半轴旋转到向量v所需的角(弧度)

    Line(){}

    Line(Point p,Vector v):P(p),v(v){ang=atan2(v.y,v.x);}

    bool operator<(const Line& L)const {

        return ang<L.ang;

    }

};

//计算直线P+tv和Q+tw的交点(计算前必须确保有唯一交点)即:Cross(v,w)非0

Point GetLineIntersection(Point P,Vector v,Point Q,Vector w){

    Vector u=P-Q;

    double t=Cross(w,u)/Cross(v,w);

    return P+v*t;

}

double getx(Point p1,Point p2,Point p3,Point p4)//找到直线和线段相交的横坐标(求两直线交点)

 {

     double k1=(p2.y-p1.y)/(p2.x-p1.x);

     double k2=(p4.y-p3.y)/(p4.x-p3.x);

     double b1=p2.y-k1*p2.x;

     double b2=p3.y-k2*p3.x;

     return (b2-b1)/(k1-k2);

 }

//点到直线距离(dis between point P and line AB)

double DistanceToLine(Point P,Point A,Point B){

    Vector v1=B-A , v2=P-A;

    return fabs(Cross(v1,v2))/Length(v1);

}

//dis between point P and segment AB

double DistancetoSegment(Point P,Point A,Point B){

    if(A==B)return Length(P-A);

    Vector v1=B-A,v2=P-A,v3=P-B;

    if(dcmp(Dot(v1,v2))<0)return  Length(v2);

    else if(dcmp(Dot(v1,v3))>0)return Length(v3);

    else return fabs(Cross(v1,v2))/Length(v1);

}

//point P on line AB 投影点

Point GetLineProjection(Point P,Point A,Point B){

    Vector v=B-A;

    return A+v*(Dot(v,P-A)/Dot(v,v));

}

//线段规范相交(只有一个且不在端点)每条线段两端都在另一条两侧,(叉积符号不同)

bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){

    a2=(a2-a1)*10000000000+a1;//射线A1A2相交线短B1B2

    double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),

           c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);

    return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;

}

//判断点P是否在线段AB上

bool OnSegment(Point p,Point a1,Point a2){

    return dcmp(Cross(a1-p,a2-p))==0 && dcmp(Dot(a1-p,a2-p))<0;

}

//多边形的面积(可以是非凸多边形)

double PolygonArea(Point* p,int n){

    double area=0;

    for(int i=1;i<n-1;i++)

        area+=Cross(p[i]-p[0],p[i+1]-p[0]);

    return area/2;

}





//点p在有向直线左边,上面不算

bool OnLeft(Line L,Point p){

    return Cross(L.v,p-L.P)>0;

}



double ok(double x,double y,double d,double z){

    double f=fabs(d*(1/tan(acos(z/y))+1/tan(acos(z/x))))-z;

    if(fabs(f)<1e-4)return  0;

    else return f;

}

//计算凸包输入点数组p,个数n,输出点数组ch,返回凸包定点数

//输入不能有重复,完成后输入点顺序被破坏

//如果不希望凸包的边上有输入点,把两个<=改成<

//精度要求高时,建议用dcmp比较

//基于水平的Andrew算法-->1、点排序2、删除重复的然后把前两个放进凸包

//3、从第三个往后当新点在凸包前进左边时继续,否则一次删除最近加入的点,直到新点在左边

int ConVexHull(Point* p,int n,Point*ch){

    sort(p,p+n);

    int m=0;

    for(int i=0;i<n;i++){//下凸包

        while(m>1 && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--;

        ch[m++]=p[i];

    }

    int k=m;

    for(int i=n-2;i>=0;i--){//上凸包

        while(m>k && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--;

        ch[m++]=p[i];

    }

    if(n>1)m--;

    return m;

}



//******************************************************************************

#define N 21

#define left -10e8

Point up[N],down[N];

int n;



double getans()//最值一定过两个顶点一上一下,所以枚举所有点对

 {

     int i,j,k;

     double ans=left,right;//二分法

     double tx,ty;

     Point ql,qr;

     for(i=0;i<n;i++)

     for(j=0;j<n;j++)

     {

         if(i==j)continue;

         ql=up[i];

         qr=down[j];

         right=left;//left是左边界,非常小的一个值,right就是枚举的过两点的直线最远能达的x的大小

         for(k=0;k<n;k++)//验证枚举直线是否满足所有点

         {

             tx=up[k].x;

             ty=(tx-ql.x)*(qr.y-ql.y)/(qr.x-ql.x)+ql.y;//求出对应x点在枚举的直线上的y值 

             if(ty>down[k].y&&ty<up[k].y||fabs(ty-down[k].y)<eps||fabs(ty-up[k].y)<eps)//该y值应在上下之间或与上或下重合

             right=tx;//更新有边界值

             else//如果该点时不满足 

             {

                 if(k)//细节!!!

                 {

                     if(ty<down[k].y)

                     right=getx(ql,qr,down[k-1],down[k]);

                     else

                     right=getx(ql,qr,up[k-1],up[k]);

                 }

                 break;

             }

         }

         if(right>ans)

             ans=right;

     }

     return ans;

 }



int main(){

    cout.precision(2);

    for(;cin>>n&&n;){

        for(int i=0;i<n;i++){

            cin>>up[i].x>>up[i].y;

            down[i].x=up[i].x;

            down[i].y=up[i].y-1;

        }

        double ans=getans();

        if(ans>up[n-1].x||fabs(ans-up[n-1].x)<eps)

        cout<<"Through all the pipe.\n";

        else cout<<fixed<<ans<<'\n';

    }return 0;

}
View Code

 

你可能感兴趣的:(ACM)