- 【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波——附3个算法源码
1.卡尔曼滤波卡尔曼滤波是一种线性最优估计方法,用于估计动态系统的状态。在姿态解算中,我们可以使用卡尔曼滤波来融合陀螺仪和加速度计的数据,以获得更稳定的姿态估计。以下是一个简单的卡尔曼滤波器实现:```c#include"kalman.h"voidKalman_Init(Kalman_TypeDef*Kalman){Kalman->P[0][0]=1;Kalman->P[1][1]=1;Kalma
- 使用MATLAB和Simulink来构建一个基于扩展卡尔曼滤波器(EKF)的定位系统
xiaoheshang_123
手把手教你学MATLAB专栏MATLAB开发项目实例1000例专栏matlabsimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义传感器模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考轨迹或姿态第七步:运行仿真并分析结果注意事项结论基于多传感器融合的卡尔曼滤波定位系统仿真可以帮助我们理解如何利用不同类型的传感器数据来提高四翼无人机(Quadcopter)的位置和姿态估计精度。在这个教程中,我们将使用M
- 实时姿态估计:MediaPipe人体关键点检测实战教程
AIGC应用创新大全
ai
实时姿态估计:MediaPipe人体关键点检测实战教程关键词:实时姿态估计、MediaPipe、人体关键点检测、BlazePose、计算机视觉摘要:本文将带你从0到1掌握MediaPipe人体关键点检测技术。我们会用“给人体贴标记”的生活比喻解释核心概念,通过Python代码实战演示如何在5分钟内实现实时姿态估计,并结合健身动作分析、AR互动等真实场景,帮你理解这项技术的底层逻辑和应用价值。无论你
- 基于深度学习的IMU解算
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的惯性测量单元(IMU)解算是一种利用深度学习算法处理和分析IMU数据,以提升姿态估计、运动轨迹跟踪和定位精度的方法。IMU通常由加速度计、陀螺仪和磁力计组成,广泛应用于智能手机、无人机、机器人、虚拟现实(VR)和增强现实(AR)等领域。以下是关于这一领域的系统介绍:1.任务和目标IMU解算的主要任务是从IMU传感器数据中准确估计物体的姿态(姿态角、姿态矩阵或四元数)、速度和位置。具体
- 深入了解MediaPipe:谷歌开源的跨平台视觉AI框架
云探
手势识别人工智能python手势识别MediaPipe
在计算机视觉领域,实时性、跨平台支持与开发效率一直是开发者追求的目标。Google推出的开源框架MediaPipe正是为了解决这些问题而生。无论你是从事人脸识别、姿态估计还是手势识别,MediaPipe都能为你提供高效、实时的解决方案。本文将带你全面了解MediaPipe的功能、架构、应用场景及如何快速上手使用。一、什么是MediaPipe?MediaPipe是GoogleResearch推出的一
- 使用预训练PoseNet模型在安卓应用中进行人体关键点检测
t0_54program
大数据与人工智能android个人开发
在当今的计算机视觉领域,姿态估计是一项关键任务,它旨在检测物体的姿态,也就是物体的方向和位置。其实现原理是通过检测一系列关键点,借此了解物体的主要部分,并估计其当前的方向。基于这些关键点,我们能够以2D或3D形式构建物体的形状。在本篇教程中,我们将利用预训练的PoseNet模型,在安卓应用里检测人体的关键点。一、基础安卓项目为节省时间,我们以TensorFlowLitePoseNet安卓演示项目为
- Unity+MediaPipe虚拟试衣间技术实现全攻略
白木橙花
unity游戏引擎
引言:数字时尚革命的序章在元宇宙概念席卷全球的今天,虚拟试衣技术正成为连接物理世界与数字孪生的关键桥梁。本文将深入解析基于Unity引擎结合MediaPipe姿态估计框架的虚拟试衣系统实现,涵盖从环境搭建到完整AR试穿界面开发的全流程,最终实现支持实时人体追踪、多服装物理模拟及用户反馈的完整解决方案。一、技术选型与架构设计1.1技术栈组合逻辑Unity3D引擎:跨平台渲染核心,提供物理引擎(Phy
- [论文阅读]Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression
qian9905
姿态估计论文阅读论文阅读深度学习机器学习
该论文发表于CVPR2021Background背景该论文关注的是的是自底向上的关键点回归人体姿态估计,作者认为回归关键点坐标的特征必须集中注意到关键点周围的区域,才能够精确回归出关键点坐标。因此提出了一种名为解构式关键点回归(DEKR)的方法。这种直接回归坐标的方法超过了以前的关键点热度图检测并组合的方法,并且在COCO和CrowdPose两个数据集上达到了目前自底向上姿态检测的最好结果上图作者
- 基于OpenCV 的人体姿态估计
欣然~
3d
这是一个基于OpenCV的人体姿态估计系统,能够从摄像头视频流中实时检测人体关键点,并通过简化算法重建3D姿态,最后在3D空间中进行仿真展示。系统主要包含2D姿态检测、3D姿态重建和3D仿真三个核心模块。模块导入与环境准备python运行importcv2importnumpyasnpimportosimporttimeimportmatplotlib.pyplotaspltfrommpl_too
- nlf 2025 部署笔记
AI算法网奇
动捕人工智能
目录jit部署测试命令nlf-pipepinenlf-pipeline依赖项:stcnbuf人体分割,没有sam2好framepump库报错:分割算法:stcn.pth相机姿态估计:jit部署测试命令python-c"importtorch;importtorchvision;torch.jit.load('/shared_disk/models/others/nlf/models/nlf_l/n
- 建筑工地安全智能监测:基于多任务姿态估计与场景理解的联合优化方案
燃灯工作室
Ai深度学习pytorch零售神经网络
一、技术原理与数学模型1.1姿态估计基础模型采用OpenPose架构改进方案,定义人体关节点坐标预测公式:P=f(I;θ_p)=[(x_1,y_1,c_1),...,(x_n,y_n,c_n)]其中I为输入图像,θ_p为姿态估计网络参数,c_i为置信度评分1.2场景理解图卷积网络构建场景元素关系图G=(V,E),节点特征更新公式:h_v^{(l+1)}=σ(W^{(l)}h_v^{(l)}+∑_{
- 计算机视觉入门到精通:从理论到实战的全面指南
qsmyhsgcs
计算机视觉人工智能图像处理神经网络深度学习图像分割OpenCV
一、引言计算机视觉旨在让计算机能够“看”懂世界,通过对图像或视频数据的处理和分析,提取出有用的信息。随着深度学习技术的飞速发展,计算机视觉领域取得了突破性进展,许多曾经难以解决的问题如今都得到了有效解决。本文将围绕计算机视觉的核心内容,为读者提供一份全面的学习指南。二、计算机视觉基础概念1.计算机视觉的主要任务计算机视觉的主要任务包括图像分类、目标检测、图像分割、人脸识别、姿态估计和图像增强等。图
- YOLOv8-pose+streamlit 实现人体关键点检测/姿态估计系统
Jumbuck_10
深度学习项目YOLO深度学习关键点检测计算机视觉python健身姿态估计
人体关键点检测系统一、安装与配置1.1安装Streamlit1.2配置文件1.3运行Streamlit应用1.4找模板二、人体关键点检测算法2.1关键点序号2.2YOLOv8-pose图像推理三、将YOLOv8-pose算法内置到streamlit中3.1整体结构3.2常见问题-RGB通道颠倒-Numpy与OpenCV之间的转换四、效果展示五、源码一、安装与配置1.1安装Streamlit在命令行
- 基于Python和PyTorch的实现示例,结合YOLOv8进行人体检测、HRNet进行姿态估计,以及LSTM进行时间序列分析。
人工智能专属驿站
计算机视觉
视频输入:从摄像头或视频文件中读取视频流。人体检测与跟踪:使用目标检测模型(如YOLOv8、EfficientDet)检测视频帧中的人体。使用目标跟踪算法(如DeepSORT)跟踪人体,确保连续帧中的人体ID一致。姿态估计:使用姿态估计模型(如HRNet、OpenPose)提取人体的关键点(如头、肩、肘、膝、踝等)。关键点信息用于分析人体的姿态和运动。时间序列分析:使用时间序列模型(如LSTM、G
- ROS & ROS2 机器人深度相机激光雷达多传感器标定工具箱
强化学习与机器人控制仿真
机器人数码相机人工智能深度学习计算机视觉视觉检测自动驾驶
系列文章目录目录系列文章目录前言三、标定目标3.1使用自定义标定目标四、数据处理4.1相机数据中的标定目标检测4.2激光雷达数据中的标定目标检测输入过滤器:正常估算:区域增长:尺寸过滤器:RANSAC:4.3用于2D-3D姿态估计的透视点算法4.4用于3D-3D配准的GICP4.5误差计算和标定确定性估计五、工作区5.1机器人工作区5.1.1初始化新机器人工作区六、节点、可组合节点和小节点6.1节
- H36M-Toolbox 开源项目教程
章来锬
H36M-Toolbox开源项目教程H36M-Toolbox项目地址:https://gitcode.com/gh_mirrors/h3/H36M-Toolbox项目介绍H36M-Toolbox是一个用于处理和分析Human3.6M数据集的工具箱。Human3.6M是一个大规模的人体姿态估计数据集,包含超过300万张图像和详细的3D姿态标注。H36M-Toolbox提供了一系列工具和脚本,帮助研究
- 基于MediaPipe的智能俯卧撑计数与姿势矫正系统
机器懒得学习
python人工智能深度学习
在现代健身和体能训练中,俯卧撑是最基础也是最有效的自重训练动作之一。然而,许多人在进行俯卧撑训练时常常存在姿势不正确、计数不准确等问题。本文将介绍如何利用计算机视觉和姿态估计技术,开发一个智能的俯卧撑计数与姿势矫正系统。技术背景本系统主要基于以下核心技术:MediaPipePose解决方案:Google开发的实时姿态估计框架OpenCV:计算机视觉处理库NumPy:科学计算库,用于角度计算Pand
- Deepmotion技术浅析(四):人体姿态估计
爱研究的小牛
AIGC—虚拟现实AIGC—视频AIGC—游戏制作人工智能深度学习机器学习AIGC
人体姿态估计是DeepMotion动作捕捉和3D重建流程中的核心模块之一。该模块的主要任务是从输入的视频帧中检测并定位人体关键点(如关节、头部、手脚等)的位置。DeepMotion的人体姿态估计模块不仅支持2D关键点检测,还能够进行3D关键点估计,为后续的动作追踪、3D重建和动画生成提供基础数据。包括:1.2D关键点检测工作原理模型架构详解(OpenPose,HRNet)模型结构公式推导训练过程关
- 点云数据集汇总整理(持续更新......)
点云SLAM
点云数据处理技术点云数据集点云数据模型SLAM点云识别点云分割点云配准深度数据
点云数据集在计算机视觉和深度学习中用于各种任务,包括三维重建、物体识别、语义分割、姿态估计等。整理点云数据集时,可以根据应用场景和数据集的特性进行分类。以下是一些知名和常用的点云数据集的汇总:1.ModelNet系列ModelNet10/ModelNet40:描述:包含3DCAD模型的点云数据集,用于分类任务。ModelNet10包含10类物体,ModelNet40包含40类物体。应用:物体分类、
- 【每日论文】DINeMo: Learning Neural Mesh Models with no 3D Annotations
WHATEVER_LEO
每日论文3d人工智能计算机视觉神经网络深度学习自然语言处理
下载PDF或查看论文,请点击:LlamaFactory-huggingfacedailypaper-每日论文解读|LlamaFactory|LlamaFactory探索LlamaFactory,为你解读AI前沿技术文章,快速掌握最新技术动态https://www.llamafactory.cn/daily-paper/detail/?id=1793摘要层级3D/6D姿态估计是实现全面3D场景理解的
- 3d pose 指标和数据集
AI算法网奇
数据结构与算法3d
目录3D姿态估计、3维重建指标:数据集EHF数据集SMPL-X3D姿态估计、3维重建指标:MVE、PMVE和p-MPJPE都是用于评估3D姿态估计、三维重建等任务中预测结果与真实数据之间误差的指标。MVE(MeanVertexError):是指模型重建过程中每个顶点的预测位置与真实位置之间的平均误差。通常用于评估三维重建的精度。PMVE(Pre-matchedVertexError):这个指标是在
- YOLOv8目标检测算法详解
培根芝士
AIYOLO目标检测
YOLOv8是Ultralytics公司最新推出的Yolo系列目标检测算法,建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性。它是实现目标检测、图像分割、姿态估计等任务的最佳选择之一。YOLOv8是一种基于深度学习的目标检测算法,其核心思想是将目标检测问题转化为一个回归问题,通过一次前向传播过程即可完成目标的位置和类别预测。它继承了YOLO系列算法的优点,如速
- Python 的 ultralytics 库详解
白.夜
人工智能
ultralytics是一个专注于计算机视觉任务的Python库,尤其以YOLO(YouOnlyLookOnce)系列模型为核心,提供了简单易用的接口,支持目标检测、实例分割、姿态估计等任务。本文将详细介绍ultralytics库的功能、安装方法、核心模块以及使用示例。1.ultralytics库简介ultralytics库由Ultralytics团队开发,旨在为YOLO系列模型提供高效、灵活且易
- TPAMI 2025 | Glissando-Net: 基于单视图的类别级姿态估计与3D重建
小白学视觉
论文解读IEEETPAMI3d深度学习论文解读顶刊论文IEEETPAMI
论文信息Glissando-Net:DeepSinglevIewCategoryLevelPoseeStimationANd3DReconstructionGlissando-Net:基于单视图的类别级姿态估计与3D重建作者:BoSun;HaoKang;LiGuan;HaoxiangLi;PhilipposMordohai;GangHua论文创新点联合估计3D形状和6D姿态:Glissando-N
- EDPose:探讨端到端的实时多人姿态估计
烧技湾
AI&ComputerVisionHPE人体姿态估计端到端检测
作者:曾爱玲(港中文博士,现已入职腾讯)单位:IDEA(深圳数字经济研究院)源码:github/ED-Pose该篇论文取得效果如下:这篇文章的优势在于:在复杂的多人场景下能够取得不错的性能提升,虽然在COCO等数据集上的提升不明显。这种端到端的方法,优势在于检测到人体是检测到关键点的一个保证。目录摘要一、介绍二、相关工作2.1.单阶段多人姿态估计2.2检测变压器:三、重新思考单阶段多人姿态估计3.
- 【计算机视觉】手势识别
油泼辣子多加
计算机视觉计算机视觉opencv人工智能
手势识别是计算机视觉领域中的重要方向,通过对摄像机采集的手部相关的图像序列进行分析处理,进而识别其中的手势,手势被识别后用户就可以通过手势来控制设备或者与设备交互。完整的手势识别一般有手的检测和姿态估计、手部跟踪和手势识别等。一、手掌检测importcv2importmediapipeasmp#初始化MediaPipe手部模型mp_hands=mp.solutions.handshands=mp_
- 【模块】Non-local Neural
dearr__
扒网络模块深度学习pytorchpython
论文《Non-localNeuralNetworks》作用非局部神经网络通过非局部操作捕获长距离依赖,这对于深度神经网络来说至关重要。这些操作允许模型在空间、时间或时空中的任何位置间直接计算相互作用,从而捕获长距离的交互和依赖关系。这种方法对于视频分类、对象检测/分割以及姿态估计等任务表现出了显著的改进。机制非局部操作通过在输入特征图的所有位置上计算响应的加权和来实现,其中权重由位置之间的关系(如
- YOLOv11快速上手:如何在本地使用TorchServe部署目标检测模型
SYC_MORE
YOLOv11系列教程:模型训练优化与部署全攻略TorchServeYOLOv11教程模型部署与推理TorchServe应用目标检测模型训练YOLO模型导出
引言YOLOv11是最新的目标检测模型,以其高效和准确著称,广泛应用于图像分割、姿态估计等任务。本文将详细介绍如何使用YOLOv11训练你的第一个目标检测模型,并通过TorchServe在本地进行部署,实现模型的快速推理。环境准备在开始之前,确保你的开发环境满足以下要求:Python版本:3.8或以上PyTorch:1.9或以上CUDA:如果使用GPU,加速训练和推理TorchServe:用于模型
- 在瑞芯微RK3588平台上使用RKNN部署YOLOv8Pose模型的C++实战指南
机 _ 长
YOLO系列模型有效涨点改进深度学习落地实战YOLOc++开发语言
在人工智能和计算机视觉领域,人体姿态估计是一项极具挑战性的任务,它对于理解人类行为、增强人机交互等方面具有重要意义。YOLOv8Pose作为YOLO系列中的新成员,以其高效和准确性在人体姿态估计任务中脱颖而出。本文将详细介绍如何在瑞芯微RK3588平台上,使用RKNN(RockchipNeuralNetworkToolkit)框架部署YOLOv8Pose模型,并进行C++代码的编译和运行。注本文全
- YOLOv8 Pose使用RKNN进行推理
い不靠譜︶朱Sir
实用项目部署YOLO人工智能pythonlinuxpip
关注微信公众号:朱sir的小站,发送202411081即可免费获取源代码下载链接一、简单介绍YOLOv8-Pose是一种基于YOLOv8架构的姿态估计模型,能够识别图像中的关键点位置,这些关键点通常表示人体的关节、特征点或其他显著位置。该模型在COCO关键点数据集上训练,适合多种姿势估计任务。二、ONNX推理1.首先需要先将Pytorch模型转换为Onnx模型,下载pt模型这里给出官方的权重下载地
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">