三, Spark 四种运行环境配置总结

三, Spark 运行环境

三, Spark 四种运行环境配置总结_第1张图片

  • Spark 的运行模式有 Local(也称单节点模式),Standalone(集群模式),Spark on Yarn(运行在Yarn上),Mesos以及K8s, Windows模式等常用模式

3.1 Local模式

  • Local模式被定义为不需要其他任何节点资源, 在本地执行Spark代码的环境,也叫单机模式, 一般用于教学,调试, 演示等等,
  • 配置文件设置方法: conf.setMaster[local[K]]

三, Spark 四种运行环境配置总结_第2张图片

1. 解压相关的依赖文件

  1. spark-3.0.0-bin-hadoop3.2.tgz文件上传到 Linux 并解压缩,放置在指定位置,路径中不要包含中文或空格
    • 下载地址: 点我
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C ../module
cd opt/module
mv spark-3.0.0-bin-hadoop3.2.tgz spark-3.0.0

2. 启动local环境

  1. cd到安装目录
./bin/spark-shell
  1. 启动成功后:
    三, Spark 四种运行环境配置总结_第3张图片

  2. 浏览器输入: 虚拟机ip:4040 即可访问web管理端
    三, Spark 四种运行环境配置总结_第4张图片

3. 测试运行情况

  1. 把测试文件 word.txt放入到上面提到的spark-3.0.0安装目录中,并输入之前的wordcount栗子的核心代码到Spark-shell
    • 注意word.txt的文件路径是以Spark-shell为基准的!
sc.textFile("data/word.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
  1. 结果如下:
    在这里插入图片描述

如何退出Shell? :quit

  1. 提交应用(使用spark-submit)

三, Spark 四种运行环境配置总结_第5张图片

3.2 Standalone 模式

local 本地模式毕竟只是用来进行练习演示的,真实工作中还是要将应用提交到对应的集群中去执行,这里我们来看看只使用 Spark 自身节点运行的集群模式,也就是我们所谓的独立部署(Standalone)模式。Spark 的 Standalone 模式体现了经典的 master-slave 模式。

在这里插入图片描述

  1. 把上一节提到的Spark-3.0.0改为spark-3.0.0-standalone
mv opt/module/spark-3.0.0 opt/module/spark-3.0.0-standalone
  1. 进入spark-alone/conf 目录, 修改slaves.temlates 文件名为slaves
mv slaves.template slaves
  1. 修改slaves文件, 添加work节点
bigdata01
bigdata02
bigdata03
  1. 修改spark-env.sh.template 文件名为 spark-env.sh
mv spark-env.sh.template spark-env.sh
  1. 修改spark-env.sh, 添加JAVA_HOME环境变量和集群对应的master节点
export JAVA_HOME=/opt/module/jdk-1.8
SPARK_MASTER_HOST=bigdata01
SPARK_MASTER_PORT=7077

注意:7077 端口,相当于 hadoop3 内部通信的 8020 端口,此处的端口需要确认自己的 Hadoop配置

  1. 分发 spark-standalone 目录
xsync spark-standalone
  1. 启动集群
./sbin/start-all.sh
  1. 查看三台服务器的运行进程

三, Spark 四种运行环境配置总结_第6张图片

  1. 查看Master资源监控 Web UI界面:
  • http://bigdata01:8080/

三, Spark 四种运行环境配置总结_第7张图片

  1. 提交应用测试
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://bigdata01:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
  • 结果同上一节

三, Spark 四种运行环境配置总结_第8张图片

3.2.1 提交参数说明

三, Spark 四种运行环境配置总结_第9张图片

3.2.3 配置历史服务

  • 由于 spark-shell 停止掉后,集群监控 linux1:4040 页面就看不到历史任务的运行情况,所以开发时都配置历史服务器记录任务运行情况。
  1. 修改 spark-defaults.conf.template 文件名为 spark-defaults.conf
mv spark-defaults.conf.template spark-defaults.conf
  1. 修改 spark-default.conf 文件,配置日志存储路径
spark.eventLog.enabled true
spark.eventLog.dir hdfs://bigdata01:8020/directory

注意:需要启动 hadoop 集群HDFS 上的 directory 目录需要提前存在

  1. 修改 spark-env.sh 文件, 添加日志配置
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://bigdata01:8020/directory
-Dspark.history.retainedApplications=30"

三, Spark 四种运行环境配置总结_第10张图片

  1. 分发配置文件
xsync conf
  1. 重新启动集群和历史服务
sbin/start-all.sh
sbin/start-history-server.sh
  1. 重新执行任务
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://bigdata01:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
  1. 查看历史服务

三, Spark 四种运行环境配置总结_第11张图片

3.2.4 配置高可用(HA)

  • 所谓的高可用是因为当前集群中的 Master 节点只有一个,所以会存在单点故障问题
  • 所以为了解决单点故障问题,需要在集群中配置多个 Master 节点,
  • 一旦处于活动状态的 Master发生故障时,由备用 Master 提供服务,保证作业可以继续执行。这里的高可用一般采用Zookeeper 设置

三, Spark 四种运行环境配置总结_第12张图片

  1. 停止集群, sbin/stop-all.sh

  2. 启动Zookeeper, zk stop

  3. 修改spark-env.sh 文件, 添加如下配置

注释如下内容:
#SPARK_MASTER_HOST=bigdata01
#SPARK_MASTER_PORT=7077
添加如下内容:
#Master 监控页面默认访问端口为 8080,但是可能会和 Zookeeper 冲突,所以改成 8989,也可以自定义,访问 UI 监控页面时请注意
SPARK_MASTER_WEBUI_PORT=8989
export SPARK_DAEMON_JAVA_OPTS="
-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=bigdata01,bigdata02,bigdata03
-Dspark.deploy.zookeeper.dir=/spark"
  1. 分发配置文件, xsync conf

  2. 启动集群, sbin/start-all.sh

  3. 启动bigdata02的单独Master节点, 可以在bigdata02的Spark web监控网页看到: 此时bigdata02节点Master状态处于备用状态(StandBy)

[win10@bigdata02 sbin]$ start-master.sh

三, Spark 四种运行环境配置总结_第13张图片

  • 下面我们来测试下高可用
  1. 提交应用到高可用集群
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://bigdata01:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
  1. 停止bigdata01的资源监控进程Master, sbin/stop-master.sh

  2. 再来查看bigdata02的监控网页, 可以看到Master状态转为了活动(ALive)

三, Spark 四种运行环境配置总结_第14张图片
三, Spark 四种运行环境配置总结_第15张图片

3.3 Yarn 模式

  • 独立部署(Standalone)模式由 Spark 自身提供计算资源,无需其他框架提供资源。这种方式降低了和其他第三方资源框架的耦合性,独立性非常强。
  • 但是, Spark 主要是计算框架,而不是资源调度框架,所以本身提供的资源调度并不是它的强项,
  • 所以还是和其他专业的资源调度框架集成会更靠谱一些。所以接下来我们来学习在强大的 Yarn 环境下 Spark 是如何工作的(其实是因为在国内工作中,Yarn 使用的非常多)。

3.3.1 解压

  1. spark-3.0.0-bin-hadoop3.2.tgz文件上传到 Linux 并解压缩,放置在指定位置,路径中不要包含中文或空格
    • 下载地址: 点我
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C ../module
cd opt/module
mv spark-3.0.0-bin-hadoop3.2.tgz spark-3.0.0

3.3.2 修改配置文件

  1. 修改 spark-defaults.conf.template 文件名为 spark-defaults.conf
mv spark-defaults.conf.template spark-defaults.conf
  1. 修改 hadoop 配置文件/opt/module/hadoop/etc/hadoop/yarn-site.xml, 并分发

 
  <name>yarn.nodemanager.vmem-check-enabledname>
   <value>falsevalue>
   <description>Whether virtual memory limits will be enforced for containersdescription>
 property>
<property>
  <name>yarn.nodemanager.vmem-pmem-rationame>
   <value>4value>
   <description>Ratio between virtual memory to physical memory when setting memory limits for containersdescription>
 property>

<property>
<property>
	<name>yarn.nodemanager.pmem-check-enabledname>
	<value>falsevalue>
property>
  1. 修改 conf/spark-env.sh,添加 JAVA_HOME 和 YARN_CONF_DIR 配置
mv spark-env.sh.template spark-env.sh
。。。
export JAVA_HOME=/opt/module/jdk1.8
YARN_CONF_DIR=/opt/module/hadoop/etc/hadoop
  1. 分发配置文件,xsync conf

  2. 启动hadoop集群

myhadoop start

启动后一定要确认Yarn已正常运行, jpsall, ResourceManager正在运行

  1. 提交任务
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
  1. 查看历史服务

三, Spark 四种运行环境配置总结_第16张图片

3.3.5 配置历史服务器

  • 由于 spark-shell 停止掉后,集群监控 linux1:4040 页面就看不到历史任务的运行情况,所以开发时都配置历史服务器记录任务运行情况。
  1. 修改 spark-defaults.conf.template 文件名为 spark-defaults.conf
mv spark-defaults.conf.template spark-defaults.conf
  1. 修改 spark-default.conf 文件,配置日志存储路径
spark.eventLog.enabled true
spark.eventLog.dir hdfs://bigdata01:8020/directory

注意:需要启动 hadoop 集群HDFS 上的 directory 目录需要提前存在

  1. 修改 spark-env.sh 文件, 添加日志配置
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://bigdata01:8020/directory
-Dspark.history.retainedApplications=30"

三, Spark 四种运行环境配置总结_第17张图片

  1. 分发配置文件, xsync conf

  2. 重新启动集群和历史服务

sbin/start-all.sh
sbin/start-history-server.sh
  1. 重新执行任务
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://bigdata01:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
  1. 查看历史服务

在这里插入图片描述

3.4 K8S & Mesos 模式

  • Mesos 是 Apache 下的开源分布式资源管理框架,它被称为是分布式系统的内核,在Twitter 得到广泛使用,管理着 Twitter 超过 30,0000 台服务器上的应用部署,
  • 但是在国内,依然使用着传统的 Hadoop 大数据框架,所以国内使用 Mesos 框架的并不多,但是原理其实都差不多

  • 容器化部署是目前业界很流行的一项技术,基于 Docker 镜像运行能够让用户更加方便地对应用进行管理和运维。容器管理工具中最为流行的就是 Kubernetes(k8s),而 Spark也在最近的版本中支持了 k8s 部署模式。
    三, Spark 四种运行环境配置总结_第18张图片

3.5 Windows 模式

每次都需要启动虚拟机,启动集群,这是一个比较繁琐的过程,
并且会占大量的系统资源,导致系统执行变慢,不仅仅影响学习效果,也影响学习进度,Spark 非常暖心地提供了可以在 windows 系统下启动本地集群的方式,这样,在不使用虚拟机的情况下,也能学习 Spark 的基本使用

  1. 把上面 3.1小节的spark-3.0.0-bin-hadoop3.2.tgz放到windows环境中, 解压到一个无中文五空格无下划线_的目录下, 注意一定要遵守这个原则, 否则在打开spark-shell.cmd时会闪退!!!

  2. 测试一下:

    1. 打开Spark-Shell
      三, Spark 四种运行环境配置总结_第19张图片
    2. 实现在data目录中创建word.txt, 随便写几个单词, 直接输入代码到shell
sc.textFile("../data/word.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect

三, Spark 四种运行环境配置总结_第20张图片

  1. 可能出现的问题和解决办法: 点我

3.6 部署模式对比

三, Spark 四种运行环境配置总结_第21张图片

你可能感兴趣的:(#,Spark,spark,hadoop,大数据)