Kafka+采集用户信息行为+flume整合(鼠标停留时间)

Kafka+采集用户信息行为+flume(鼠标停留时间)

一、Kafka概述

与消息系统类似,是消息中间件的一种。能够订阅和发布流式数据,能够以容错的方式存储流式数据,当数据产生时就能够处理

Kafka+采集用户信息行为+flume整合(鼠标停留时间)_第1张图片

生产者:数据产生者

 

消费者:数据使用者

 

中间件:进行数据缓冲

 

采集用户信息行为:

 

用户信息采集:页面上两个按钮、三个模块,当点击按钮的时候会显示点击那个按钮的日志,当鼠标滑过的时候显示鼠标在某个区域停留的时间

Log4j的代码如下:

# 全局配置 -> DEBUG(调试) -> INFO(信息) ->ERROR(错误)
log4j.rootLogger=DEBUG,stdout,file
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
# 日志格式 p:日志级别 t:线程 m:信息 n:换行
log4j.appender.stdout.layout.ConversionPattern=%m%n

log4j.appender.file=org.apache.log4j.FileAppender
log4j.appender.file.File=/home/hadoop/data.log
log4j.appender.file.append=true
log4j.appender.file.layout=org.apache.log4j.PatternLayout

 

 

Jsp页面的代码如下:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%
    String path = request.getContextPath();
    String basePath = request.getScheme() + "://" + request.getServerName() + ":" + request.getServerPort() + path;
%>
<html>
<head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
    <title>Titletitle>
    <script type="text/javascript">
        var basePath = '<%= basePath%>';
    script>

引入jar包
    <script type="text/javascript" src="js/jquery-1.7.1.min.js">script>
    <script type="text/javascript">
        $(function () {
            $(".product").click(function () {
                var productId = $(this).data("productid");
                $.ajax({
                    url : basePath + "/EventServlet",
                    type : "post",
                    data : {
                        type : "click",
                        product : productId
                    }
                })
            });
            var date = 0;
            $(".productDiv").mouseover(function () {
                date = new Date();
                console.log(date)
            })
            $(".productDiv").mouseleave(function () {
                var time = new Date() - date;
                var productId = $(this).data("productid");
                $.ajax({
                    url : basePath + "/EventServlet",
                    type : "post",
                    data : {
                        type : "mouse",
                        product : productId,
                        time : time
                    }
                })
            })
        });
    script>
head>
<body>
<% session.setAttribute("count",1); %>
<form action="<%= basePath%>/LoggerServlet" method="post">
    <input type="text" name="userName" />
    <br />
    <input type="submit" value="提交" >
form>
<div id="content" style="border: 1px solid red;width: 3000px;height: 1002px">
    <div id="left" style="border: 1px solid red;float: left;width: 600px;height: 998px">
        <div class="productDiv" style="width: 300px;height: 300px;border: 1px solid blue;margin: 5px;" data-productid = "3">div>
        <div class="productDiv" style="width: 300px;height: 300px;border: 1px solid blue;margin: 5px;" data-productid = "4">div>
        <div class="productDiv" style="width: 300px;height: 300px;border: 1px solid blue;margin: 5px;" data-productid = "5">div>
    div>
    <div id="right" style="border: 1px solid red;float: left;width: 998px;height: 998px">
        <input class="product" type="button" value="商品1" data-productid = "1" />
        <input class="product" type="button" value="商品2" data-productid = "2" />
    div>
div>
body>
html>

 

 

Serverlet的代码如下:

import org.apache.log4j.Logger;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

@WebServlet(name = "EventServlet",urlPatterns = "/EventServlet")
public class EventServlet extends HttpServlet {
    protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
        // 根据不同的事件类型记录用户的行为信息
        String type = request.getParameter("type");
        String productId = request.getParameter("product");
        Logger logger = Logger.getRootLogger();
        switch (type){
            case "click" : {
                logger.info("click-" + productId);
                break;
            }
            case "mouse" : {
                Long time = Long.parseLong(request.getParameter("time"));
                logger.info("mouse-" + productId + "-" + time);
            }
        }
    }
    protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
        doPost(request,response);
    }
}

 

 

 

kafka解决的问题

供求平衡

供大于求

数据产生快 - 使用较慢(数据计算) -> 多生产的数据如何存储/高效的对数据进行消费

供不应求 - 合理确定生产消费模式([推送]/拉取)产生一些数据就推送一些数据

 

 

Kafka容错性 - 多副本机制(leader) -> 进程异常终止会推选出新的leader -> 保证正常工作

容错性指的是多副本一个挂掉启用另外一个

 

Kafka就相当于篮子

二、部署和使用

前置环境:zookeeper

 

tar -zvxf zookeeper-3.4.12.tar.gz
vi ~/.bash_profile
export ZK_HOME=/home/bigdata/zookeeper-3.4.12
export PATH=$PATH:$ZK_HOME/bin

source ~/.bash_profile

cd $ZK_HOME/conf
mv zoo_sample.cfg zoo.cfg
vi zoo.cfg
dataDir=/home/bigdata/zookeeper

zkServer.sh start

kafka安装

tar -zvxf kafka_2.10-0.10.2.2.tgz
mv kafka_2.10-0.10.2.2 kafka-0.10.2.2

vi ~/.bash_profile
export KAFKA_HOME=/home/bigdata/kafka-0.10.2.2
PATH=$PATH:$KAFKA_HOME/bin

source ~/.bash_profile

mkdir ~/kafka   //存放kafka的缓存日志

核心配置(server.properties)

# 不重复的整数每个broker监听一个端口
broker.id
# 是否开启topic的删除
delete.topic.enble
# kafka日志文件:逗号分隔多个路径
log.dirs
# 分区数量
num.partitions
# zookeeper的地址
zookeeper.connect

1. 单节点单Broker

server-0.properties配置

mv $KAFKA_HOME/config/server.properties $KAFKA_HOME/config/server-0.properties
vi $KAFKA_HOME/conf/server-0.properties
broker.id=0   //每个broker监听一个端口,将数据保存log中

delete.topic.enble=ture
listeners=PLAINTEXT://SZ01:9092
log.dirs=/home/bigdata/kafka/logs-0
num.partitions=1
zookeeper.connect=SZ01:2181

启动kafka

kafka-server-start.sh -daemon $KAFKA_HOME/config/server-0.properties

2. 单节点多Broker

在单节点的server.properties配置基础上进行修改

cp $KAFKA_HOME/config/server-0.properties $KAFKA_HOME/config/server-1.properties
cp $KAFKA_HOME/config/server-0.properties $KAFKA_HOME/config/server-2.properties
cp $KAFKA_HOME/config/server-0.properties $KAFKA_HOME/config/server-3.properties

server-1.properties

broker.id=1
listeners=PLAINTEXT://SZ01:9093
log.dirs=/home/bigdata/kafka/logs-1
num.partitions=1
zookeeper.connect=SZ01:2181

server-2.properties

broker.id=2
listeners=PLAINTEXT://SZ01:9094
log.dirs=/home/bigdata/kafka/logs-2
num.partitions=1
zookeeper.connect=SZ01:2181

server-3.properties

broker.id=3
listeners=PLAINTEXT://SZ01:9095
log.dirs=/home/bigdata/kafka/logs-3
num.partitions=1
zookeeper.connect=SZ01:2181

启动kafka

kafka-server-start.sh -daemon $KAFKA_HOME/config/server-1.properties
kafka-server-start.sh -daemon $KAFKA_HOME/config/server-2.properties
kafka-server-start.sh -daemon $KAFKA_HOME/config/server-3.properties

停止Kafka

kafka-server-stop.sh
# 失效时使用如下脚本
kill -s TERM $(jps -l | grep 'kafka\.Kafka' | awk '{print $1}')

三、Kafka的使用

1. Topic操作

使用kafka-topics.sh

使用--zookeeper指定zookeeper地址

使用--replication-factor指定副本个数

使用--partitions指定分区数

使用--topic指定名称

使用--list显示Topic列表

(1)创建Topic

单broker

理清topic创建的概念

Broker------相当于篮子

topic -> 多个副本(小于等于broker) -> 多个分区

每一个篮子可以装一个副本,每个副本分几个区

Partitions必须小于factor

 

删除Topic

1.配置文件中开启delete.topic.enble = true

2.通过命令执行删除操作 -> marked

kafka-topics.sh --delete --zookeeper hh:2181 --topic first_topic

3.停止Kafka进程

4.log.dir中的文件夹清空

5.启动Kafka进程

kafka-topics.sh --create --zookeeper hh:2181 --replication-factor 1 --partitions 1 --topic first_topic

多broker

kafka-topics.sh --create --zookeeper hh:2181 --replication-factor 3 --partitions 1 --topic myTopic

(2)查看Topic列表

kafka-topics.sh --list --zookeeper SZ01:2181

(3)删除Topic

kafka-topics.sh --delete --zookeeper SZ01:2181 --topic first_topic
# 标记删除后,删除对应目录下文件,重启kafka

(4)查看Topic描述

kafka-topics.sh --describe --zookeeper SZ01:2181 [--topic first_topic]

2. 消息测试

使用kafka-console-producer.sh生产消息

使用--broker-list指定broker列表

使用kafka-console-consumer.sh消费消息

使用--bootstrap-server指定需要连接的服务

使用--from-beginning指定从开始位置开始消费

(1)生产消息

单broker

kafka-console-producer.sh --broker-list hh:9092 --topic first_topic
hello kafka

多broker

kafka-console-producer.sh --broker-list SZ01:9093,SZ01:9094,SZ01:9095 --topic myTopic
hello kafka

(2)消费消息

单broker

kafka-console-consumer.sh --bootstrap-server hh:9092 --topic first_topic [--from-beginning]

多broker

kafka-console-consumer.sh --zookeeper hh:2181 --topic myTopic [--from-beginning]

3. 容错性

当topic下存在多个broker时,会选举出一个leader,当其他节点出现故障时,不影响使用。当leader出现故障时,如果当前topic下还有其他节点,会重新选举出leader,保证使用

 

以上使用的是脚本的方式进行测试,现在要做的是使用程序进行监控

 

四、Kafka的API编程

1. 开发环境

新建Scala项目

 

使用sbt构建

 

添加依赖

scalaVersion := "2.10.7"

libraryDependencies += "org.apache.kafka" % "kafka-clients" % "0.10.2.2"

 

 

2. 配置文件

在scala下新建两个配置文件

kafkaConsumer.properties

kafkaProducer.properties

 

Producer配置项

# 连接列表数据存放主机
bootstrap.servers=hh:9092
# 配置请求完成标准
acks=all
# 设置重试次数
retries=0
# 缓冲区大小(字节)
batch.size=16384
# 生产者发送消息时的等待时间(毫秒)
linger.ms=1
# 缓冲内存大小(字节)
buffer.memory=33554432
# key的序列化方式
key.serializer=org.apache.kafka.common.serialization.IntegerSerializer
# value的序列化方式
value.serializer=org.apache.kafka.common.serialization.StringSerializer

r

Consumer配置项

# 连接列表
bootstrap.servers=hh:9092
# 使用者所属组(唯一)
group.id=test
# 自动提交偏移量
enable.auto.commit=true
# 提交偏移量频率(毫秒)
auto.commit.interval.ms=1000
# key的反序列化方式
key.deserializer=org.apache.kafka.common.serialization.IntegerDeserializer
# value的反序列化方式
value.deserializer=org.apache.kafka.common.serialization.StringDeserializer

 

工具类:(向程序中加载配置项的作用)

src\main\scala\com\qfedu\kakfa\util

import java.io.IOException;
import java.util.Properties;

public class PropertiesUtil {
   
   private String fileName;
   private Properties properties = new Properties();
   
   public PropertiesUtil(String fileName) {
      this.fileName = fileName;
      open();
   }
   
   private void open() {
      try {
         properties.load(Thread.currentThread().getContextClassLoader().getResourceAsStream(fileName));
      } catch (IOException e) {
         e.printStackTrace();
      }
   }

   /**
    * 根据key取出properties文件中对应的value
    * @param key
    * @return value
    */
   public String readPropertyByKey(String key) {
      return properties.getProperty(key);
   }

   /**
    * 从文件中读取配置后将整个的Properties返回
    * @return properties成员
    */
   public Properties getProperties(){
      return this.properties;
   }

}

 

 

 

 

 

 

 

 

3.\main\scala\com\qfedu\kafka建立生产者消费者

生产者

import com.qfedu.util.PropertiesUtil
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
// 继承Thread
class KafkaMsgProducer extends Thread {
  // 使用工具类读取配置
  val properties = new PropertiesUtil("kafkaProducer.properties").getProperties()
  // 初始化KafkaProducer
  val producer = new KafkaProducer[Int, String](properties)
  // 重写run方法
  override def run() = {
    for (i <- 0 until 100){
      producer.send(new ProducerRecord[Int, String]("first_topic", i, s"msg:$i"))
      Thread.sleep(1000)
    }
    // 释放资源
    producer.close
  }
}

 


实际操作的代码

import com.qfedu.kakfa.util.PropertiesUtil
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}

object Producer {
  def main(args: Array[String]): Unit = {
    val props = new PropertiesUtil("kafkaProducer.properties").getProperties
    val producer = new KafkaProducer[Int,String](props)
    for (i <- 0 until 100)
      producer.send(new ProducerRecord("first_topic",i,s"value:$i"))
    producer.close()
  }
}

 

首先linux端启动消费者(前提kafka进程启动,topic已经建立)

kafka-console-consumer.sh --bootstrap-server hh:9092 --topic first_topic

启动程序上面

Kafka+采集用户信息行为+flume整合(鼠标停留时间)_第2张图片

4. Consumer API

实际操作的代码

import java.util
import java.util.Properties
import com.qfedu.kakfa.util.PropertiesUtil
import org.apache.kafka.clients.consumer.{ConsumerRecord, ConsumerRecords, KafkaConsumer}
object Consumer {
  def main(args: Array[String]): Unit = {
    // 读取配置文件后给消费者指定不同的id
    val prop1:Properties = new PropertiesUtil("kafkaConsumer.properties").getProperties
    prop1.setProperty("group.id","test01")
    val prop2:Properties = new PropertiesUtil("kafkaConsumer.properties").getProperties
    prop2.setProperty("group.id","test02")
    val consumer1 = new KafkaConsumer[Int,String](prop1)
    val consumer2 = new KafkaConsumer[Int,String](prop2)
    // 传入的集合为Collection子类
    consumer1.subscribe(util.Arrays.asList("first_topic"))
    consumer2.subscribe(util.Arrays.asList("first_topic"))
    while (true){
      // 设置超时时间,接收生产数据
      val records1: ConsumerRecords[Int, String] = consumer1.poll(100)
      val records2: ConsumerRecords[Int, String] = consumer2.poll(100)
      val it1 = records1.iterator()
      // 使用迭代器遍历
      while (it1.hasNext){
        val record: ConsumerRecord[Int, String] = it1.next()
        println(s"consumer1 - offset:${record.offset},key:${record.key},value:${record.value}")
      }
      val it2 = records2.iterator()
      // 使用迭代器遍历
      while (it2.hasNext){
        val record: ConsumerRecord[Int, String] = it2.next()
        println(s"consumer2 - offset:${record.offset},key:${record.key},value:${record.value}")
      }
    }
  }
}

 

 

启动程序:

 

启动生产者:(前提如上)

kafka-console-producer.sh --broker-list hh:9092 --topic first_topic

 

flume与kafka的整合:

实现过程:

 

WebServer - Flume

 

Source : exec

channel : memory

sink : avro

 

DataServer - Flume

 

Source : avro

channel : memory

sink : Kafka

 

Flum监听web的日志放到data.log文件夹----flum读取到avro-----再次从avro中读取到first_topic

 

第一步:打包如上的web(鼠标滑动的)程序存放到linux的tomcat的 webapps

文件夹下------改名为ROOT.war

 

第二步配置flume的启动配置文件

 

WebServer端的配置文件example-file.conf

mple.conf: A single-node Flume configuration

 

# Name the components on this agent

a1.sources = r1

a1.sinks = k1

a1.channels = c1

 

# Describe/configure the source

a1.sources.r1.type = exec

a1.sources.r1.command = tail -f /home/hadoop/data.log

# Describe the sink

a1.sinks.k1.type = avro

a1.sinks.k1.hostname =hh

a1.sinks.k1.port = 8888

 

# Use a channel which buffers events in memory

a1.channels.c1.type = memory

 

# Bind the source and sink to the channel

a1.sources.r1.channels = c1

a1.sinks.k1.channel = c1

 

DataServer端的flume的配置文件example-fileAvro.confkafka.conf

mple.conf: A single-node Flume configuration

 

# Name the components on this agent

a2.sources = r1

a2.sinks = k1

a2.channels = c1

 

# Describe/configure the source

a2.sources.r1.type = avro

a2.sources.r1.bind = hh

a2.sources.r1.port = 8888

 

# Describe the sink

a2.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink

a2.sinks.k1.kafka.bootstrap.servers = hh:9092

a2.sinks.k1.kafka.topic = first_topic

 

# Use a channel which buffers events in memory

a2.channels.c1.type = memory

 

# Bind the source and sink to the channel

a2.sources.r1.channels = c1

a2.sinks.k1.channel = c1

 

第三步启动tomcat

 ./startup.sh

 

第四步:启动两个flume

 

启动一个fileflum

flume-ng agent \

--name a1 \

--conf $FLUME_HOME/conf \

--conf-file $FLUME_HOME/conf/example-file.conf &

 

flume-ng agent \

--name a2 \

--conf $FLUME_HOME/conf \

--conf-file $FLUME_HOME/conf/example-fileAvro.confkafka.conf &

 

 

第五步启动kafka进程

kafka-server-start.sh -daemon $KAFKA_HOME/config/server-0.properties

 

开一个topic

kafka-topics.sh --create --zookeeper hh:2181 --replication-factor 1 --partitions 1 --topic first_topic

 

第六步开启一个消费者

 

查看topic

kafka-topics.sh --list --zookeeper hh:2181

 

__consumer_offsets

first_topic

 

 

开启消费者

kafka-console-consumer.sh --bootstrap-server hh:9092 --topic first_topic

 

第七步:测试:

Kafka+采集用户信息行为+flume整合(鼠标停留时间)_第3张图片

 

 

 

 

时间段数据的统计:

Web阶段经过flum,再经过kafka 再kafka里面监听两个消费者一个是属于鼠标滑过求一个时间段内,在每个区域的总时间

 

另一个是监听一段时间内点击的数量

 

在Scala的项目中添加如下程序

main\scala\com\qfedu\kafka\consumer\MouseConsumer.scala

 

package com.qfedu.kafka.consumer

import java.util
import java.util.{Date, Properties}

import com.qfedu.kakfa.util.PropertiesUtil
import org.apache.kafka.clients.consumer.{ConsumerRecord, ConsumerRecords, KafkaConsumer}

import scala.collection.mutable.HashMap

object MouseConsumer {
  def main(args: Array[String]): Unit = {
    // 读取配置文件后给消费者指定不同的id
    val prop: Properties = new PropertiesUtil("kafkaConsumer.properties").getProperties
    prop.setProperty("group.id", "mouse")
    val consumer = new KafkaConsumer[Int, String](prop)
    // 传入的集合为Collection子类
    consumer.subscribe(util.Arrays.asList("first_topic"))
    val start = new Date().getTime
    var flag = true
    val result = new HashMap[String, Integer]()
    while (flag) {
      val end = new Date().getTime
      if ((end - start) > (2 * 60 * 1000)) {
        flag = false
      }
      // 设置超时时间,接收生产数据
      val records: ConsumerRecords[Int, String] = consumer.poll(100)
      val it = records.iterator()
      // 使用迭代器遍历
      while (it.hasNext) {
        val record: ConsumerRecord[Int, String] = it.next()
        val types = record.value().split("-")(0)
        if ("mouse".equals(types)) {
          val key = record.value().split("-")(1)
          val time = record.value().split("-")(2).toInt
          val count = result.getOrElse[Integer](key, 0) + time
          result.put(key, count)
        }
      }
    }
    for ((key, value) <- result) {
      println(s"key:$key,value:$value")
    }
  }
}

 

 

 

 

 

main\scala\com\qfedu\kafka\consumer\ClickConsumer.scala

 

package com.qfedu.kafka.consumer

import java.util
import java.util.{Date, Properties}

import scala.collection.mutable.HashMap
import com.qfedu.kakfa.util.PropertiesUtil
import org.apache.kafka.clients.consumer.{ConsumerRecord, ConsumerRecords, KafkaConsumer}

object ClickConsumer {
  def main(args: Array[String]): Unit = {
    // 读取配置文件后给消费者指定不同的id
    val prop:Properties = new PropertiesUtil("kafkaConsumer.properties").getProperties
    prop.setProperty("group.id","click")
    val consumer = new KafkaConsumer[Int,String](prop)
    // 传入的集合为Collection子类
    consumer.subscribe(util.Arrays.asList("first_topic"))
    val start = new Date().getTime
    var flag = true
    val result = new HashMap[String,Integer]()
    while (flag){
      val end = new Date().getTime
      if ((end - start) > (2 * 60 * 1000)){
        flag = false
      }
      // 设置超时时间,接收生产数据
      val records: ConsumerRecords[Int, String] = consumer.poll(100)
      val it = records.iterator()
      // 使用迭代器遍历
      while (it.hasNext){
        val record: ConsumerRecord[Int, String] = it.next()
        val types = record.value().split("-")(0)
        if ("click".equals(types)){
          val key = record.value().split("-")(1)
          val count = result.getOrElse[Integer](key,0) + 1
          result.put(key,count)
        }
      }
    }
    for ((key,value) <- result){
      println(s"key:$key,value:$value")
    }
  }
}

 

 

在前一个例子都启动的前提下,在IDEA中启动这两个程序

不断的做点击按钮以及鼠标滑过的操作

等待2分钟后出现如下结果:

 

 

key:5,value:4522

key:4,value:7443

key:3,value:11462

 

 

key:2,value:11

key:1,value:13

 

提取数据 -> 两个消费者(click/mouse) -> 计算出最多的被浏览商品/被点击商品(2 * 60 * 1000)

 

15号当日的数据 -> 10 - 14日之间的所有的统计结果 -> 保存策略 -> 更新频率

数据采集(Flume-Kafka) -> 数据分析(数据接收 - 计算 - 历史结果合并 - 历史结果存放)

 

计算频率 - 1秒

最新结果 - 10秒

你可能感兴趣的:(kafka,flume,IDEA,scala)