22 款神经网络的设计和可视化工具【转载】
https://blog.csdn.net/zong596568821xp/article/details/107283252
github如何查看项目历史版本
https://www.jianshu.com/p/feef717fb52b
超越EfficientNet!MutualNet:一种自适应相互学习网络宽度和分辨率的网络
https://blog.csdn.net/weixin_47196664/article/details/107588014
PyTorch image models, scripts, pretrained weights -- (SE)ResNet/ResNeXT, DPN, EfficientNet, MixNet, MobileNet-V3/V2, MNASNet, Single-Path NAS, FBNet, and more
https://github.com/rwightman/pytorch-image-models
OpenMMLab Detection Toolbox and Benchmark,不断优化的目标检测系列项目
https://github.com/open-mmlab/mmdetection
PyImageSearch - You can master Computer Vision, Deep Learning, and OpenCV.——国外项目
https://www.pyimagesearch.com/
【AI不惑境】深度学习中的多尺度模型设计
https://www.jianshu.com/p/57cfa4fdd423
如何自己打造一个深度学习服务器? - 知乎
https://zhuanlan.zhihu.com/p/40306143
The Open Images dataset,针对大场景,多标签,多目标
https://github.com/openimages/dataset
解读Squeeze-and-Excitation Networks(SENet)
https://www.jianshu.com/p/59fdc448a33f
Code for "Jointly Optimize Data Augmentation and Network Training: Adversarial Data Augmentation in Human Pose Estimation" (CVPR 2018),对抗数据增强,YOLOv4中采用
https://github.com/zhiqiangdon/pose-adv-aug
目标检测特殊层:PSROIPooling详解
https://blog.csdn.net/wfei101/article/details/80766812
Focal Loss理解,RetinaNet中提出
https://www.cnblogs.com/king-lps/p/9497836.html
Focal loss论文详解
https://zhuanlan.zhihu.com/p/49981234
Deformable Convolution Networks[译]
https://www.jianshu.com/p/940d21c79aa3
【论文复现】CBAM: Convolutional Block Attention Module,YOLOv4中采用
https://blog.csdn.net/u013738531/article/details/82731257
实例分割--(PANet)Path Aggregation Network for Instance Segmentation,YOLOv4采用
https://blog.csdn.net/u011974639/article/details/79595179
增强CNN学习能力的Backbone:CSPNet,YOLOv4采用
https://blog.csdn.net/DD_PP_JJ/article/details/105094761
EfficientDet-BiFPN,YOLOv4采用
https://blog.csdn.net/qq_36808245/article/details/103603020
CNN channel pruning, LeGR, MorphNet, AMC. Codebase for paper "LeGR: Filter Pruning via Learned Global Ranking",剪枝,求秩
https://github.com/cmu-enyac/LeGR
【DL】模型蒸馏Distillation
https://zhuanlan.zhihu.com/p/71986772
multi-teacher学习
https://blog.csdn.net/yagreenhand/article/details/104394008
基于MobileNetV3的结构性剪枝优化 - 道客巴巴
http://www.doc88.com/p-13647389770455.html
网络压缩-2,剪枝,3、量化,4、降低数据数值范围 ,5、迁移学习
https://blog.csdn.net/J_Boom/article/details/87933448
清华&伯克利ICLR论文:重新思考6大剪枝方法
https://www.sohu.com/a/270464822_100024677
模型通道剪枝汇总(channel pruning),总结的好,有翻译,有代码,有论文,有工具
https://blog.csdn.net/qq_38109843/article/details/107462887
网络模型剪枝-论文阅读《Pruning Filters For Efficient Convnets》
https://blog.csdn.net/AManFromEarth/article/details/106888694
yolov3通道剪枝层剪枝知识蒸馏:无人机数据集案例
https://blog.csdn.net/weixin_41397123/article/details/103828931
论文阅读【模型剪枝(二)】
https://blog.csdn.net/weixin_38632246/article/details/95975928
伯克利发布BDD100K:目前最大规模开放驾驶视频数据集
https://baijiahao.baidu.com/s?id=1602056615202328671&wfr=spider&for=pc
航空航天遥感图像目标检测数据集汇总
https://blog.csdn.net/weixin_36670529/article/details/84580431
最新的无人机视觉综述,数据集VisDrone现已开源
https://zhuanlan.zhihu.com/p/103582224
详解深度学习中“注意力机制”
https://www.jianshu.com/p/9b922fb83d77
注意力机制最新综述解读
https://blog.csdn.net/shenziheng1/article/details/89323074
空间域和通道域注意力机制
https://blog.csdn.net/zfnice/article/details/94998471
【论文复现】CBAM: Convolutional Block Attention Module
https://blog.csdn.net/u013738531/article/details/82731257
注意力机制CBAM代码实现(续篇)
https://blog.csdn.net/qq_43265072/article/details/106058693
分类问题-----多标签(multilabel)、多类别(multiclass)
https://blog.csdn.net/qq_27009517/article/details/80264919
深度学习---多标签分类问题
https://blog.csdn.net/qq_38906523/article/details/80210527
多类分类问题实现(np_utils.to_categorical函数使用)
https://www.cnblogs.com/lhuser/p/9073012.html
卷积神经网络的网络结构——Hourglass
https://blog.csdn.net/u013841196/article/details/81048237
深度学习模块介绍 —— Hourglass Module
https://blog.csdn.net/BeBuBu/article/details/102935262
CenterNet的骨干网络之DLASeg
https://blog.csdn.net/DD_PP_JJ/article/details/107833023
Code for the CVPR Paper "Deep Layer Aggregation"——DLA网络
https://github.com/ucbdrive/dla
cvpr2018 Deep Layer Aggregation(DLANet)
https://blog.csdn.net/wuyubinbin/article/details/80622762
Deep Layer Aggregation笔记
https://blog.csdn.net/weeeeeida/article/details/88106665
https://github.com/zzzxxxttt/pytorch_simple_CenterNet_45
大神CSDN:https://blog.csdn.net/DD_PP_JJ
pytorch版CenterNet训练自己的数据集
https://blog.csdn.net/DD_PP_JJ/article/details/107715634
CenterNet 数据加载解析
https://blog.csdn.net/DD_PP_JJ/article/details/107691811
CenterNet骨干网络之hourglass
https://blog.csdn.net/DD_PP_JJ/article/details/107715399
CenterNet的骨干网络之DLASeg
https://blog.csdn.net/DD_PP_JJ/article/details/107833023
CenterNet之loss计算代码解析
https://blog.csdn.net/DD_PP_JJ/article/details/108065543
CenterNet测试推理过程
https://blog.csdn.net/DD_PP_JJ/article/details/108350727
Pytorch-RetinaFace 详解,biubug6/Pytorch_Retinaface
https://zhuanlan.zhihu.com/p/157297085
【SSD算法】史上最全代码解析-核心篇,基于ssd.pytorch
https://zhuanlan.zhihu.com/p/79854543
目标检测算法之NMS后处理相关
https://mp.weixin.qq.com/s/orYMdwZ1VwwIScPmIiq5iA
ssd.pytorch to ncnn,较符合pytorch版本的代码移植需求
https://github.com/xuming0629/ncnn_ssd
MobileNet-SSD Face Detection by ncnn,可参考模型导入结构
https://github.com/imistyrain/ncnn_face
mobilenet ssd @ ncnn,使用较早版本的ncnn,有一些参考意义
https://github.com/arlose/ncnn-mobilenet-ssd
using ncnn, on android, detection, model size only 11MB, 10fps on 845/cpu,结合ncnn和SSD移植到android
https://github.com/JuZiSYJ/MobilenetSSD_Android
Object detection, 3D detection, and pose estimation using center point detection:——开创性工作,好
https://github.com/xingyizhou/CenterNet
CenterNet的骨干网络之DLASeg
https://blog.csdn.net/DD_PP_JJ/article/details/107833023
tensorboy/centerpose: Push the Extreme of the pose estimation
https://github.com/tensorboy/centerpose
目标检测anchor free系列检测器简介:CornerNet,CenterNet
https://zhuanlan.zhihu.com/p/104573037
论文也撞衫,你更喜欢哪个无锚点CenterNet?
https://baijiahao.baidu.com/s?id=1644905321397514137&wfr=spider&for=pc
CenterNet-FSAF-NMS-single-object
https://github.com/ZY-Russell/CenterNet-FSAF-NMS-single-object
扔掉anchor!真正的CenterNet——Objects as Points论文解读
https://zhuanlan.zhihu.com/p/66048276
Corner-based对象检测算法三连之——长江后浪MatrixNet
https://www.jianshu.com/p/c94935bab3f8
《FCOS: Fully Convolutional One-Stage Object Detection》阅读笔记
https://blog.csdn.net/watermelon1123/article/details/90045300
Darknet神经网络框架概述:
https://blog.csdn.net/u010122972/article/details/83541978
DarkNet和YOLO官网:
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/yolo/
YOLOv4源码下载:
https://github.com/AlexeyAB/darknet
YOLO系列算法精讲:从yolov1至yolov4的进阶之路(呕心沥血2万字超全整理,建议收藏!)
https://blog.csdn.net/wjinjie/article/details/107509243
45.2mAP+155FPS! PP-YOLO来了, 精度速度双超YOLOv4
https://blog.csdn.net/Yong_Qi2015/article/details/107625324
https://blog.csdn.net/DD_PP_JJ/article/details/105744139
YOLOv4 怎么学,看完这一篇就够了!
https://blog.csdn.net/wjinjie/article/details/107445791
重磅更新!YoloV4最新论文与源码!权重!结构!翻译!
https://blog.csdn.net/sinat_39783664/article/details/105728290
重磅更新!YoloV4最新论文!解读yolov4框架
https://blog.csdn.net/Sophia_11/article/details/105726907
一张图梳理YOLOv4论文:
https://www.cnblogs.com/pprp/p/12771430.html
YOLO V4 — 网络结构解析(特详细!)
https://zhuanlan.zhihu.com/p/150127712
YOLO V4 — 损失函数解析(特详细!)
https://zhuanlan.zhihu.com/p/159209199
Github地址: https://github.com/ultralytics/yolov3
【从零开始学习YOLOv3】1. cfg文件解析
https://blog.csdn.net/DD_PP_JJ/article/details/105013056
【从零开始学习YOLOv3】2. YOLOv3中的代码配置和数据集构建
https://blog.csdn.net/DD_PP_JJ/article/details/104019264
【从零开始学习YOLOv3】3.YOLOv3的数据组织和处理
https://blog.csdn.net/DD_PP_JJ/article/details/104709299
【从零开始学习YOLOv3】4. YOLOv3中的参数搜索
https://blog.csdn.net/DD_PP_JJ/article/details/104709330
【从零开始学习YOLOv3】5. 网络模型的构建
https://blog.csdn.net/DD_PP_JJ/article/details/104709403
【从零开始学习YOLOv3】6. YOLOv3中的YOLOLayer解析和推理过程
https://blog.csdn.net/DD_PP_JJ/article/details/104071327
【从零开始学习YOLOv3】7. 教你在YOLOv3模型中添加Attention机制
https://blog.csdn.net/DD_PP_JJ/article/details/104109369
【从零开始学习YOLOv3】8. YOLOv3中Loss部分计算
https://blog.csdn.net/DD_PP_JJ/article/details/105173151
我们是如何改进YOLOv3进行红外小目标检测的?
https://blog.csdn.net/DD_PP_JJ/article/details/108507720
An experiment of transferring backbone of yolov3 into mobilenetv3
https://github.com/tanluren/mobilenetv3-yolov3
yolov3 yolov4 channel and layer pruning, Knowledge Distillation 层剪枝,通道剪枝,知识蒸馏
https://github.com/tanluren/yolov3-channel-and-layer-pruning
YOLOv3-model-pruning,剪枝
https://gitee.com/dudu00joker/YOLOv3-model-pruning
在 oxford hand 数据集上对 YOLOv3 做模型剪枝(network slimming)
https://github.com/Lam1360/YOLOv3-model-pruning
Model Compression—YOLOv3 with multi lightweight backbones(ShuffleNetV2 HuaWei GhostNet), attention, prune and quantization,剪枝,蒸馏,量化
https://github.com/HaloTrouvaille/YOLO-Multi-Backbones-Attention
YOLOv3模型剪枝,瘦身80%,提速100%,精度基本不变
https://blog.csdn.net/dQCFKyQDXYm3F8rB0/article/details/95041551
(一)使用YOLOv3训练BDD100K数据集之数据集下载
https://www.pianshen.com/article/2479172945/
The backbone is replaced with ShuffleNet v2
https://github.com/ZhuYun97/ShuffleNetv2-YOLOv3
【ONNX】使用yolov3.onnx模型进行目标识别的实验
https://blog.csdn.net/u013597931/article/details/89412272
pytorch-yolov3训练、剪枝、转onnx/tensorrt 加速(记录性文章)
https://blog.csdn.net/hanqu3456/article/details/105492285
YOLOv3剪枝再升级!(后续可参考)
https://mp.weixin.qq.com/s?__biz=MzIwMTE1NjQxMQ==&mid=2247489169&idx=2&sn=f8b1c76a6657b8065d039df704df5913&chksm=96f364c5a184edd3bd3754854c494da4912b6fc90735ee1350ab031862aed5466881f41a68ab&scene=21#wechat_redirect
Face Paper: YOLOv2论文详解
https://blog.csdn.net/wfei101/article/details/78944891
【论文学习】YOLO9000: Better,Faster,Stronger(YOLO9000:更好,更快,更强)
https://blog.csdn.net/hysteric314/article/details/53909408
一文打尽目标检测NMS——精度提升篇
https://zhuanlan.zhihu.com/p/151914931
一文打尽目标检测NMS——效率提升篇
https://zhuanlan.zhihu.com/p/157900024
目标检测回归损失函数简介:SmoothL1/IoU/GIoU/DIoU/CIoU Loss
https://zhuanlan.zhihu.com/p/104236411
IoU、GIoU、DIoU、CIoU损失函数的那点事儿
https://zhuanlan.zhihu.com/p/94799295
目标检测之 IoU
https://blog.csdn.net/u014061630/article/details/82818112
目标检测算法之AAAI 2020 DIoU Loss 已开源(YOLOV3涨近3个点)
https://cloud.tencent.com/developer/article/1558533
darknet with GIoU
https://github.com/generalized-iou/g-darknet
Distance-IoU Loss into YOLO v3
https://github.com/Zzh-tju/DIoU-darknet
Detectron2入门教程
https://blog.csdn.net/weixin_36670529/article/details/104021823
MobileNetV3-SSD for object detection and implementation in PyTorch
https://github.com/shaoshengsong/MobileNetV3-SSD
Ssd.pytorch可视化实践
https://zhuanlan.zhihu.com/p/93883352
【目标检测实战】Pytorch—SSD模型训练(VOC数据集)
https://zhuanlan.zhihu.com/p/92154612
目标识别:SSD 论文及pytorch代码学习笔记
https://blog.csdn.net/zxd52csx/article/details/82795104
DSSD(Deconvolutional Single Shot Detector)算法理解
https://blog.csdn.net/zj15939317693/article/details/80599596
Retinanet目标检测算法(简单,明了,易用,全中文注释,单机多卡训练,视频检测)(based on pytorch,Simple, Clear, Mutil GPU)
https://github.com/yatengLG/Retinanet-Pytorch
Pytorch implementation of RetinaNet object detection.
https://github.com/yhenon/pytorch-retinanet
R-CNN系列算法详解:R-CNN —》Fast R-CNN —》Faster R-CNN 进阶之路
https://blog.csdn.net/wjinjie/article/details/105930512
(RegionProposal Network)RPN网络结构及详解
https://blog.csdn.net/qq_36269513/article/details/80421990
四、全卷积网络FCN详细讲解(超级详细哦)
https://blog.csdn.net/qq_41760767/article/details/97521397
全卷积网络 FCN 详解,用于语义分割
https://blog.csdn.net/tuuzhang/article/details/81004731
FastNN提供在阿里巴巴集团的机器学习平台PAI
https://github.com/alibaba/FastNN
Alink is the Machine Learning algorithm platform based on Flink
https://github.com/alibaba/Alink
机器学习PAI-人人都用得起的机器学习平台-阿里云
https://www.aliyun.com/product/bigdata/product/learn
刚刚,阿里重磅发布机器学习平台PAI 3.0!
https://blog.csdn.net/cpongo3/article/details/89027125