widerface转换为VOC数据集

注意:VM虚拟机无法使用物理机显卡,建议用docker

有大兄弟表示运行完 train.txt 没有内容,解决方法为路径不能有中文。

一、下载widerface数据集

widerface数据集下载地址:http://shuoyang1213.me/WIDERFACE/

widerface转换为VOC数据集_第1张图片

wider_face_split.zip  widerface的标注文件(只有train和val的标注文件)

 WIDER_test.zip、WIDER_val.zip、WIDER_train.zip分别为图像文件

二、相关文件配置

  1、设置一个根目录(本人:/home/roy/TF/widerface)

  2、将下载的四个文件解压

     widerface转换为VOC数据集_第2张图片

 3、创建三个文件夹

Annotations 标注文件夹

ImageSets/Main/train.txt 图片文件名

JPEGImages 图片源文件

   

  其中ImageSets内还要创建一个Main文件夹

三、转换脚本

注意修改脚本中地址

rootdir = "/home/roy/TF/widerface"
gtfile = "/home/roy/TF/widerface/wider_face_split/wider_face_train_bbx_gt.txt"
im_folder = "/home/roy/TF/widerface/WIDER_train/images"
fwrite = open("/home/roy/TF/widerface/ImageSets/Main/train.txt", "w")
import os,cv2,sys,shutil,numpy

from xml.dom.minidom import Document
import os


# 本程序可以讲widerface转为VOC格式的数据

def writexml(filename, saveimg, bboxes, xmlpath):
    doc = Document()

    annotation = doc.createElement('annotation')

    doc.appendChild(annotation)

    folder = doc.createElement('folder')

    folder_name = doc.createTextNode('widerface')
    folder.appendChild(folder_name)
    annotation.appendChild(folder)
    filenamenode = doc.createElement('filename')
    filename_name = doc.createTextNode(filename)
    filenamenode.appendChild(filename_name)
    annotation.appendChild(filenamenode)
    source = doc.createElement('source')
    annotation.appendChild(source)
    database = doc.createElement('database')
    database.appendChild(doc.createTextNode('wider face Database'))
    source.appendChild(database)
    annotation_s = doc.createElement('annotation')
    annotation_s.appendChild(doc.createTextNode('PASCAL VOC2007'))
    source.appendChild(annotation_s)
    image = doc.createElement('image')
    image.appendChild(doc.createTextNode('flickr'))
    source.appendChild(image)
    flickrid = doc.createElement('flickrid')
    flickrid.appendChild(doc.createTextNode('-1'))
    source.appendChild(flickrid)
    owner = doc.createElement('owner')
    annotation.appendChild(owner)
    flickrid_o = doc.createElement('flickrid')
    flickrid_o.appendChild(doc.createTextNode('muke'))
    owner.appendChild(flickrid_o)
    name_o = doc.createElement('name')
    name_o.appendChild(doc.createTextNode('muke'))
    owner.appendChild(name_o)

    size = doc.createElement('size')
    annotation.appendChild(size)

    width = doc.createElement('width')
    width.appendChild(doc.createTextNode(str(saveimg.shape[1])))
    height = doc.createElement('height')
    height.appendChild(doc.createTextNode(str(saveimg.shape[0])))
    depth = doc.createElement('depth')
    depth.appendChild(doc.createTextNode(str(saveimg.shape[2])))

    size.appendChild(width)

    size.appendChild(height)
    size.appendChild(depth)
    segmented = doc.createElement('segmented')
    segmented.appendChild(doc.createTextNode('0'))
    annotation.appendChild(segmented)
    for i in range(len(bboxes)):
        bbox = bboxes[i]
        objects = doc.createElement('object')
        annotation.appendChild(objects)
        object_name = doc.createElement('name')
        object_name.appendChild(doc.createTextNode('face'))
        objects.appendChild(object_name)
        pose = doc.createElement('pose')
        pose.appendChild(doc.createTextNode('Unspecified'))
        objects.appendChild(pose)
        truncated = doc.createElement('truncated')
        truncated.appendChild(doc.createTextNode('0'))
        objects.appendChild(truncated)
        difficult = doc.createElement('difficult')
        difficult.appendChild(doc.createTextNode('0'))
        objects.appendChild(difficult)
        bndbox = doc.createElement('bndbox')
        objects.appendChild(bndbox)
        xmin = doc.createElement('xmin')
        xmin.appendChild(doc.createTextNode(str(bbox[0])))
        bndbox.appendChild(xmin)
        ymin = doc.createElement('ymin')
        ymin.appendChild(doc.createTextNode(str(bbox[1])))
        bndbox.appendChild(ymin)
        xmax = doc.createElement('xmax')
        xmax.appendChild(doc.createTextNode(str(bbox[0] + bbox[2])))
        bndbox.appendChild(xmax)
        ymax = doc.createElement('ymax')
        ymax.appendChild(doc.createTextNode(str(bbox[1] + bbox[3])))
        bndbox.appendChild(ymax)
    f = open(xmlpath, "w")
    f.write(doc.toprettyxml(indent=''))
    f.close()

rootdir = "/home/roy/TF/widerface"
gtfile = "/home/roy/TF/widerface/wider_face_split/wider_face_train_bbx_gt.txt"
im_folder = "/home/roy/TF/widerface/WIDER_train/images"
fwrite = open("/home/roy/TF/widerface/ImageSets/Main/train.txt", "w")

# wider_face_train_bbx_gt.txt的文件内容
# 第一行为名字
# 第二行为头像的数量 n
# 剩下的为n行人脸数据
# 以下为示例
# 0--Parade/0_Parade_marchingband_1_117.jpg
# 9
# 69 359 50 36 1 0 0 0 0 1
# 227 382 56 43 1 0 1 0 0 1
# 296 305 44 26 1 0 0 0 0 1
# 353 280 40 36 2 0 0 0 2 1
# 885 377 63 41 1 0 0 0 0 1
# 819 391 34 43 2 0 0 0 1 0
# 727 342 37 31 2 0 0 0 0 1
# 598 246 33 29 2 0 0 0 0 1
# 740 308 45 33 1 0 0 0 2 1

with open(gtfile, "r") as gt:
    while(True):
        gt_con = gt.readline()[:-1]
        if gt_con is None or gt_con == "":
            break;
        im_path = im_folder + "/" + gt_con;
        print(im_path)
        im_data = cv2.imread(im_path)
        if im_data is None:
            continue
        # 可视化的部分
        # cv2.imshow(im_path, im_data)
        # cv2.waitKey(0)

        numbox = int(gt.readline())

        # 获取每一行人脸数据
        bboxes = []
        if numbox == 0:  # numbox 为0 的情况处理
            gt.readline()
        else:
            for i in range(numbox):
                line = gt.readline()
                infos = line.split(" ")  # 用空格分割
                # x y w h .....
                bbox = (int(infos[0]), int(infos[1]), int(infos[2]), int(infos[3]))
                # 绘制人脸框
                # cv2.rectangle(im_data, (int(infos[0]), int(infos[1])),
                #               (int(infos[0]) + int(infos[2]), int(infos[1]) + int(infos[3])),
                #               color=(0, 0, 255), thickness=1)
                bboxes.append(bbox)  # 将一张图片的所有人脸数据加入bboxes
            # cv2.imshow(im_path, im_data)
            # cv2.waitKey(0)
            filename = gt_con.replace("/", "_")  # 将存储位置作为图片名称,斜杠转为下划线
            fwrite.write(filename.split(".")[0] + "\n")
            cv2.imwrite("{}/JPEGImages/{}".format(rootdir, filename), im_data)
            xmlpath = "{}/Annotations/{}.xml".format(rootdir, filename.split(".")[0])
            writexml(filename, im_data, bboxes, xmlpath)
fwrite.close()

四、运行脚本

python3 widerface_roy.py 

运行过程

widerface转换为VOC数据集_第3张图片

五、运行结果

ImageSets/Main/train.txt 图片文件名

ImageSets为图片原图

Annotations中为VOC的注解文件

widerface转换为VOC数据集_第4张图片

六、补充

widerface转换为VOC数据集_第5张图片

widerface前四位为x y w h 后六位为官网封面上的6个人脸属性

widerface转换为VOC数据集_第6张图片

 

你可能感兴趣的:(tensorflow,widerface)