Java的一些常识

Java的一些常识

  • 1. Java 语言的特点
  • 2. JVM、JDK 和 JRE
    • 2.1 JVM
    • 2.2 JDK
    • 2.3 JRE
  • 3. 字节码
    • 3.1 Java 程序从源代码到运行的过程
    • 3.2 JIT 和 AOT的优缺点
    • 3.3 解释java编译与解释并存
  • 4. 基本语法
    • 4.1 字符型常量和字符串常量
    • 4.2 Java 语言关键字
    • 4.3 自增自减运算符
    • 4.4 continue、break 和 return 的区别
    • 4.5 静态方法为什么不能调用非静态成员
    • 4.6 静态方法和实例方法
      • 4.6.1 调用方式
      • 4.6.2 访问类成员是否存在限制
    • 4.7 重载
    • 4.8 重写
    • 4.9 重载和重写的区别
    • 4.10 == 和 equals() 的区别
      • 4.10.1 ==
      • 4.10.2 equals()
    • 4.11 hashCode() 与 equals()
      • 4.11.1 hashCode()
        • 重写 equals() 时必须重写 hashCode() 方法
  • 5. 基本数据类型
    • 5.1 Java 中的几种基本数据类型
    • 5.2 包装类型的常量池技术
    • 5.3 自动装箱与拆箱
  • 6. 面向对象基础
    • 6.1 面向对象和面向过程
    • 6.2 成员变量与局部变量
    • 6.3 创建一个对象,对象实体与对象引用
    • 6.4 对象的相等与指向他们的引用相等
    • 6.5 一个类的构造方法
    • 6.6 面向对象三大特征
      • 6.6.1 封装
      • 6.6.2 继承
      • 6.6.3 多态
    • 6.7 接口和抽象类的共同点和区别
    • 6.8 浅拷贝
    • 6.9 深拷贝
    • 6.10 引用拷贝
  • 7. Java 常见对象
    • 7.1 Object
    • 7.2 String
      • 7.2.1 String是不可变
      • 7.2.2 线程安全性
      • 7.2.3 性能
      • 7.2.4 字符串拼接
      • 7.2.5 String#equals() 和 Object#equals()
      • 7.2.6 字符串常量池的作用
  • 8. 泛型
    • 8.1 Java 泛型(generics)
    • 8.2 泛型擦除
    • 8.3 泛型类
    • 8.4 泛型接口
    • 8.5 泛型方法
    • 8.6 常用的通配符
  • 9. 反射
    • 9.1 反射机制优缺点
  • 10. 注解
  • 11. 异常
    • 11.1 Exception 和 Error
    • 11.2 Checked Exception 和 Unchecked Exception
    • 11.3 Throwable 类常用方法
    • 11.4 try-catch-finally
    • 11.5 finally
    • 11.6 使用 try-with-resources 代替try-catch-finally
  • 12. I/O
    • 12.1 序列化、反序列化
    • 12.2 字段不想进行序列化
    • 12.3 IO 流分种类
    • 12.4 字符流


1. Java 语言的特点

简单易学

Java看起来设计得很像C++,但是为了使语言小和容易熟悉,设计者们把C++语言中许多可用的特征去掉了,这些特征是一般程序员很少使用的。例如,Java不支持go to语句,代之以提供break和continue语句以及异常处理。Java还剔除了C++的操作符过载(overload)和多继承特征,并且不使用主文件,免去了预处理程序。因为Java没有结构,数组和串都是对象,所以不需要指针。Java能够自动处理对象的引用和间接引用,实现自动的无用单元收集,使用户不必为存储管理问题烦恼,能更多的时间和精力花在研发上。

面向对象(封装,继承,多态)

Java是一个面向对象的语言。对程序员来说,这意味着要注意应中的数据和操纵数据的方法(method),而不是严格地用过程来思考。在一个面向对象的系统中,类(class)是数据和操作数据的方法的集合。数据和方法一起描述对象(object)的状态和行为。每一对象是其状态和行为的封装。类是按一定体系和层次安排的,使得子类可以从超类继承行为。在这个类层次体系中有一个根类,它是具有一般行为的类。Java程序是用类来组织的。

Java还包括一个类的扩展集合,分别组成各种程序包(Package),用户可以在自己的程序中使用。例如,Java提供产生图形用户接口部件的类(java.awt包),处理输入输出的类(java.io包)和支持网络功能的类(java.net包)。

跨平台性( Java 虚拟机实现平台无关性)

所谓的跨平台性就是指软件可以不受计算机硬件和操作系统的约束而在任意计算机环境下正常运行。而在Java中它自带的虚拟机可以很好的实现跨平台性,它提供了一个字节码到底层硬件平台及操作系统的屏障,使得Java语言具备跨平台性。

支持多线程

提供支持多线程的执行(也称为轻便过程),能处理不同任务,使具有多线程的程序设计很容易。Java的lang包提供一个Thread类,它支持开始线程、运行线程、停止线程和检查线程状态的方法。

Java语言支持多个线程的同时执行,并提供多线程之间的同步机制(关键字为 synchronized)。

可靠性;

Java的强类型机制、异常处理、垃圾的自动收集等是Java程序健壮性的重要保证。对指针的丢弃是Java的明智选择。Java的安全检查机制使得Java更具健壮性。

安全性;

Java的存储分配模型是它防御恶意代码的主要方法之一。Java没有指针,所以程序员不能得到隐蔽起来的内幕和伪造指针去指向存储器。更重要的是,Java编译程序不处理存储安排决策,所以程序员不能通过查看声明去猜测类的实际存储安排。编译的Java代码中的存储引用在运行时由Java解释程序决定实际存储地址。

Java运行系统使用字节码验证过程来保证装载到网络上的代码不违背任何Java语言限制。这个安全机制部分包括类如何从网上装载。例如,装载的类是放在分开的名字空间而不是局部类,预防恶意的小应用程序用它自己的版本来代替标准Java类。

支持网络编程并且很方便

( Java 语言诞生本身就是为简化网络编程设计的,因此 Java 语言不仅支持网络编程而且很方便);

高性能

Java是一种先编译后解释的语言,所以它不如全编译性语言快。但是有些情况下性能是很要紧的,为了支持这些情况,Java设计者制作了“及时”编译程序,它能在运行时把Java字节码翻译成特定CPU(中央处理器)的机器代码,也就是实现全编译了。Java字节码格式设计时考虑到这些“及时”编译程序的需要,所以生成机器代码的过程相当简单,它能产生相当好的代码。

编译与解释并存

Java编译程序生成字节码(byte-code),而不是通常的机器码。Java字节码提供对体系结构中性的目标文件格式,代码设计成可有效地传送程序到多个平台。Java程序可以在任何实现了Java解释程序和运行系统(run-time system)的系统上运行。

在一个解释性的环境中,程序开发的标准“链接”阶段大大消失了。如果说Java还有一个链接阶段,它只是把新类装进环境的过程,它是增量式的、轻量级的过程。因此,Java支持快速原型和容易试验,它将导致快速程序开发。这是一个与传统的、耗时的“编译、链接和测试”形成鲜明对比的精巧的开发过程。


2. JVM、JDK 和 JRE

2.1 JVM

Java 虚拟机(JVM)是运行 Java 字节码的虚拟机。JVM有针对不同系统的特定实现(Windows,Linux,macOS),目的是使用相同的字节码,它们都会给出相同的结果。字节码和不同系统的JVM 实现是 Java 语言“一次编译,随处可以运行”的关键所在。

JVM 并不是只有一种!只要满足 JVM 规范,每个公司、组织或者个人都可以开发自己的专属 JVM。

2.2 JDK

JDK 是 Java Development Kit 缩写,它是功能齐全的 Java SDK。它拥有 JRE 所拥有的一切,还有编译器(javac)和工具(如 javadoc 和 jdb)。它能够创建和编译程序。

2.3 JRE

JRE 是 Java 运行时环境。它是运行已编译 Java 程序所需的所有内容的集合,包括 Java 虚拟机(JVM),Java
类库,java 命令和其他的一些基础构件。但是,它不能用于创建新程序。


3. 字节码

在 Java 中,JVM 可以理解的代码就叫做字节码(即扩展名为 .class 的文件),它不面向任何特定的处理器,只面向虚拟机。Java语言通过字节码的方式,在一定程度上解决了传统解释型语言执行效率低的问题,同时又保留了解释型语言可移植的特点。所以, Java程序运行时相对来说还是高效的(不过,和 C++,Rust,Go等语言还是有一定差距的),而且,由于字节码并不针对一种特定的机器,因此,Java 程序无须重新编译便可在多种不同操作系统的计算机上运行。

3.1 Java 程序从源代码到运行的过程

.java
javac编译
.class
解释器
JIT
机器能理解的代码
OS

.class->机器码 这一步。
在这一步 JVM 类加载器首先加载字节码文件,然后通过解释器逐行解释执行,这种方式的执行速度会相对比较慢。而且,有些方法和代码块是经常需要被调用的(也就是所谓的热点代码),所以后面引进了 JIT(just-in-time compilation) 编译器,而 JIT 属于运行时编译。当 JIT 编译器完成第一次编译后,其会将字节码对应的机器码保存下来,下次可以直接使用。而我们知道,机器码的运行效率肯定是高于 Java 解释器的。这也解释了我们为什么经常会说 Java 是编译与解释共存的语言 。

HotSpot 采用了惰性评估(Lazy Evaluation)的做法,根据二八定律,消耗大部分系统资源的只有那一小部分的代码(热点代码),而这也就是 JIT 所需要编译的部分。JVM 会根据代码每次被执行的情况收集信息并相应地做出一些优化,因此执行的次数越多,它的速度就越快。JDK 9 引入了一种新的编译模式 AOT(Ahead of Time Compilation),它是直接将字节码编译成机器码,这样就避免了 JIT 预热等各方面的开销。JDK 支持分层编译和 AOT 协作使用。但是 ,AOT 编译器的编译质量是肯定比不上 JIT 编译器的。

3.2 JIT 和 AOT的优缺点

JIT:吞吐量高,有运行时性能加成,可以跑得更快,并可以做到动态生成代码等,但是相对启动速度较慢,并需要一定时间和调用频率才能触发 JIT 的分层机制

AOT:内存占用低,启动速度快,可以无需 runtime 运行,直接将 runtime 静态链接至最终的程序中,但是无运行时性能加成,不能根据程序运行情况做进一步的优化

3.3 解释java编译与解释并存

将高级编程语言按照程序的执行方式分为两种:

  • 编译型 :编译型语言 会通过编译器将源代码一次性翻译成可被该平台执行的机器码。一般情况下,编译语言的执行速度比较快,开发效率比较低。常见的编译性语言有 C、C++、Go、Rust 等等。
  • 解释型 :解释型语言会通过解释器一句一句的将代码解释(interpret)为机器代码后再执行。解释型语言开发效率比较快,执行速度比较慢。常见的解释性语言有 Python、JavaScript、PHP 等等。
一次性编译
一条一条解释
编译型源代码
编译器
机器能理解的语言
OS
解释型源代码
解释器

这是因为 Java 语言既具有编译型语言的特征,也具有解释型语言的特征。因为 Java 程序要经过先编译,后解释两个步骤,由 Java编写的程序需要先经过编译步骤,生成字节码(.class 文件),这种字节码必须由 Java 解释器来解释执行。


4. 基本语法

4.1 字符型常量和字符串常量

形式 : 字符常量是单引号引起的一个字符,字符串常量是双引号引起的 0 个或若干个字符。

含义 : 字符常量相当于一个整型值( ASCII 值),可以参加表达式运算; 字符串常量代表一个地址值(该字符串在内存中存放位置)。

占内存大小 : 字符常量只占 2 个字节; 字符串常量占若干个字节。

4.2 Java 语言关键字

Java的一些常识_第1张图片
default 这个关键字很特殊,既属于程序控制,也属于类,方法和变量修饰符,还属于访问控制。

  • 在程序控制中,当在 switch 中匹配不到任何情况时,可以使用 default 来编写默认匹配的情况。
  • 在类,方法和变量修饰符中,从 JDK8 开始引入了默认方法,可以使用 default 关键字来定义一个方法的默认实现。
  • 在访问控制中,如果一个方法前没有任何修饰符,则默认会有一个修饰符 default,但是这个修饰符加上了就会报错。

虽然 true, false, 和 null 看起来像关键字但实际上他们是字面值,同时你也不可以作为标识符来使用。

4.3 自增自减运算符

当 b = ++a 时,先自增(自己增加 1),再赋值(赋值给 b);当 b = a++ 时,先赋值(赋值给 b),再自增(自己增加 1)。

4.4 continue、break 和 return 的区别

continue :指跳出当前的这一次循环,继续下一次循环。
break :指跳出整个循环体,继续执行循环下面的语句。

return 用于跳出所在方法,结束该方法的运行。return 一般有两种用法:
return; :直接使用 return 结束方法执行,用于没有返回值函数的方法
return value; :return 一个特定值,用于有返回值函数的方法

4.5 静态方法为什么不能调用非静态成员

  1. 静态方法是属于类的,在类加载的时候就会分配内存,可以通过类名直接访问。而非静态成员属于实例对象,只有在对象实例化之后才存在,需要通过类的实例对象去访问。
  2. 在类的非静态成员不存在的时候静态成员就已经存在了,此时调用在内存中还不存在的非静态成员,属于非法操作。

4.6 静态方法和实例方法

4.6.1 调用方式

在外部调用静态方法时,可以使用 类名.方法名 的方式,也可以使用 对象.方法名 的方式,而实例方法只有后面这种方式。也就是说,调用静态方法可以无需创建对象 。

不过,需要注意的是一般不建议使用 对象.方法名 的方式来调用静态方法。这种方式非常容易造成混淆,静态方法不属于类的某个对象而是属于这个类。
因此,一般建议使用 类名.方法名 的方式来调用静态方法。

4.6.2 访问类成员是否存在限制

静态方法在访问本类的成员时,只允许访问静态成员(即静态成员变量和静态方法),不允许访问实例成员(即实例成员变量和实例方法),而实例方法不存在这个限制。

4.7 重载

发生在同一个类中(或者父类和子类之间),方法名必须相同,参数类型不同、个数不同、顺序不同,方法返回值和访问修饰符可以不同。

public class B extends A{
    //@Override
    public int getWay(int a, int b) {
        return a + b;
    }
}

class A{
    public int getWay(int a){
        return a;
    }
}

编译器必须挑选出具体执行哪个方法,它通过用各个方法给出的参数类型与特定方法调用所使用的值类型进行匹配来挑选出相应的方法。
如果编译器找不到匹配的参数, 就会产生编译时错误, 因为根本不存在匹配,或者没有一个比其他的更好(这个过程被称为重载解析(overloading resolution))。
Java 允许重载任何方法, 而不只是构造器方法。

重载就是同一个类中多个同名方法根据不同的传参来执行不同的逻辑处理。

4.8 重写

重写发生在运行期,是子类对父类的允许访问的方法的实现过程进行重新编写。

  1. 方法名、参数列表必须相同,子类方法返回值类型应比父类方法返回值类型更小或相等,抛出的异常范围小于等于父类,访问修饰符范围大于等于父类。
  2. 如果父类方法访问修饰符为 private/final/static 则子类就不能重写该方法,但是被 static 修饰的方法能够被再次声明。
  3. 构造方法无法被重写

重写就是子类对父类方法的重新改造,外部样子不能改变,内部逻辑可以改变。

关于重写的返回值类型 :如果方法的返回类型是 void 和基本数据类型,则返回值重写时不可修改。但是如果方法的返回值是引用类型,重写时是可以返回该引用类型的子类的。

4.9 重载和重写的区别

重载就是同样的一个方法能够根据输入数据的不同,做出不同的处理

重写就是当子类继承自父类的相同方法,输入数据一样,但要做出有别于父类的响应时,你就要覆盖父类方法

Java的一些常识_第2张图片

4.10 == 和 equals() 的区别

4.10.1 ==

对于基本类型和引用类型的作用效果是不同的:

  • 对于基本数据类型来说,== 比较的是值。
  • 对于引用数据类型来说,== 比较的是对象的内存地址。

因为 Java 只有值传递,所以,对于 ==来说,不管是比较基本数据类型,还是引用数据类型的变量,其本质比较的都是值,只是引用类型变量存的值是对象的地址。

4.10.2 equals()

不能用于判断基本数据类型的变量,只能用来判断两个对象是否相等。equals()方法存在于Object类中,而Object类是所有类的直接或间接父类,因此所有的类都有equals()方法。

//Object class
public boolean equals(Object obj) {
     return (this == obj);
}

存在两种使用情况:

  • 类没有重写 equals()方法 :通过equals()比较该类的两个对象时,等价于通过“==”比较这两个对象,使用的默认是 Object类equals()方法。
  • 类重写了 equals()方法 :一般我们都重写 equals()方法来比较两个对象中的属性是否相等;若它们的属性相等,则返回 true(即,认为这两个对象相等)。

4.11 hashCode() 与 equals()

4.11.1 hashCode()

hashCode() 的作用是获取哈希码(int 整数),也称为散列码。这个哈希码的作用是确定该对象在哈希表中的索引位置。

Object 的 hashCode() 方法是本地方法,也就是用 C 语言或 C++ 实现的,该方法通常用来将对象的内存地址转换为整数之后返回。

散列表存储的是键值对(key-value),它的特点是:能根据“键”快速的检索出对应的“值”。这其中就利用到了散列码!(可以快速找到所需要的对象)。hashCode() 和 equals()都是用于比较两个对象是否相等。

在一些容器(比如 HashMap、HashSet)中,有了 hashCode() 之后,判断元素是否在对应容器中的效率会更高。
两个对象的hashCode 值相等并不代表两个对象就相等。

因为 hashCode() 所使用的哈希算法也许刚好会让多个对象传回相同的哈希值。越糟糕的哈希算法越容易碰撞,但这也与数据值域分布的特性有关(所谓哈希碰撞也就是指的是不同的对象得到相同的 hashCode )。

  • 如果两个对象的hashCode 值相等,那这两个对象不一定相等(哈希碰撞)。
  • 如果两个对象的hashCode 值相等并且equals()方法也返回 true,我们才认为这两个对象相等。
  • 如果两个对象的hashCode 值不相等,我们就可以直接认为这两个对象不相等。

重写 equals() 时必须重写 hashCode() 方法

因为两个相等的对象的 hashCode 值必须是相等。也就是说如果 equals 方法判断两个对象是相等的,那这两个对象的 hashCode 值也要相等。

如果重写 equals() 时没有重写 hashCode() 方法的话就可能会导致 equals 方法判断是相等的两个对象,hashCode 值却不相等。

重写 equals() 时没有重写 hashCode() 方法的话,使用 HashMap 可能会出现问题

  • equals 方法判断两个对象是相等的,那这两个对象的 hashCode 值也要相等。
  • 两个对象有相同的 hashCode 值,他们也不一定是相等的(哈希碰撞)。

5. 基本数据类型

5.1 Java 中的几种基本数据类型

Java 中有 8 种基本数据类型,分别为:

6 种数字类型:

  • 4 种整数型:byte、short、int、long
  • 2 种浮点型:float、double

1 种字符类型:char
1 种布尔型:boolean。

Java的一些常识_第3张图片
这八种基本类型都有对应的包装类分别为:Byte、Short、Integer、Long、Float、Double、Character、Boolean 。

基本数据类型直接存放在 Java 虚拟机栈中的局部变量表中,而包装类型属于对象类型,我们知道对象实例都存在于堆中。相比于对象类型,基本数据类型占用的空间非常小。

局部变量表主要存放了编译期可知的基本数据类型 (boolean、byte、char、short、int、float、long、double)、对象引用(reference 类型,它不同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置)。

5.2 包装类型的常量池技术

Java 基本类型的包装类的大部分都实现了常量池技术。

Byte,Short,Integer,Long 这 4 种包装类默认创建了数值 [-128,127]的相应类型的缓存数据。
Character 创建了数值在 [0,127] 范围的缓存数据。
Boolean 直接返回 True or False。

两种浮点数类型的包装类 Float,Double 并没有实现常量池技术。

所有整型包装类对象之间值的比较,全部使用 equals 方法比较。

5.3 自动装箱与拆箱

装箱:将基本类型用它们对应的引用类型包装起来;
拆箱:将包装类型转换为基本数据类型;

装箱其实就是调用了包装类的valueOf()方法,拆箱其实就是调用了 xxxValue()方法。

如果频繁拆装箱的话,也会严重影响系统的性能。我们应该尽量避免不必要的拆装箱操作。


6. 面向对象基础

6.1 面向对象和面向过程

  • 面向过程把解决问题的过程拆成一个个方法,通过一个个方法的执行解决问题。
  • 面向对象会先抽象出对象,然后用对象执行方法的方式解决问题。

面向对象开发的程序一般更易维护、易复用、易扩展。

6.2 成员变量与局部变量

  • 语法形式 :从语法形式上看,成员变量是属于类的,而局部变量是在代码块或方法中定义的变量或是方法的参数;成员变量可以被 public,private,static 等修饰符所修饰,而局部变量不能被访问控制修饰符及 static 所修饰;但是,成员变量和局部变量都能被 final 所修饰。
  • 存储方式 :从变量在内存中的存储方式来看,如果成员变量是使用 static 修饰的,那么这个成员变量是属于类的,如果没有使用 static 修饰,这个成员变量是属于实例的。而对象存在于堆内存,局部变量则存在于栈内存。
  • 生存时间 :从变量在内存中的生存时间上看,成员变量是对象的一部分,它随着对象的创建而存在,而局部变量随着方法的调用而自动生成,随着方法的调用结束而消亡。
  • 默认值 :从变量是否有默认值来看,成员变量如果没有被赋初始值,则会自动以类型的默认值而赋值(一种情况例外:被 final 修饰的成员变量也必须显式地赋值),而局部变量则不会自动赋值。

6.3 创建一个对象,对象实体与对象引用

new 运算符,new 创建对象实例(对象实例在堆内存中),对象引用指向对象实例(对象引用存放在栈内存中)。

一个对象引用可以指向 0 个或 1 个对象(一根绳子可以不系气球,也可以系一个气球);一个对象可以有 n 个引用指向它(可以用 n 条绳子系住一个气球)。

6.4 对象的相等与指向他们的引用相等

  • 对象的相等一般比较的是内存中存放的内容是否相等。
  • 引用相等一般比较的是他们指向的内存地址是否相等。

6.5 一个类的构造方法

构造方法是一种特殊的方法,主要作用是完成对象的初始化工作。

如果一个类没有声明构造方法,也可以执行!因为一个类即使没有声明构造方法也会有默认的不带参数的构造方法。如果我们自己添加了类的构造方法(无论是否有参),Java 就不会再添加默认的无参数的构造方法了,这时候,就不能直接 new 一个对象而不传递参数了,所以我们一直在不知不觉地使用构造方法,这也是为什么我们在创建对象的时候后面要加一个括号(因为要调用无参的构造方法)。如果我们重载了有参的构造方法,记得都要把无参的构造方法也写出来(无论是否用到),因为这可以帮助我们在创建对象的时候少踩坑。

构造方法特点如下:

  • 名字与类名相同。
  • 没有返回值,但不能用 void 声明构造函数。
  • 生成类的对象时自动执行,无需调用。
  • 构造方法不能被 override(重写),但是可以 overload(重载),所以你可以看到一个类中有多个构造函数的情况。

6.6 面向对象三大特征

6.6.1 封装

封装是指把一个对象的状态信息(也就是属性)隐藏在对象内部,不允许外部对象直接访问对象的内部信息。但是可以提供一些可以被外界访问的方法来操作属性。

6.6.2 继承

不同类型的对象,相互之间经常有一定数量的共同点。每一个对象还定义了额外的特性使得他们与众不同。继承是使用已存在的类的定义作为基础建立新类的技术,新类的定义可以增加新的数据或新的功能,也可以用父类的功能,但不能选择性地继承父类。通过使用继承,可以快速地创建新的类,可以提高代码的重用,程序的可维护性,节省大量创建新类的时间,提高我们的开发效率。

  • 子类拥有父类对象所有的属性和方法(包括私有属性和私有方法),但是父类中的私有属性和方法子类是无法访问,只是拥有。
  • 子类可以拥有自己属性和方法,即子类可以对父类进行扩展。
  • 子类可以用自己的方式实现父类的方法。

6.6.3 多态

表示一个对象具有多种的状态,具体表现为父类的引用指向子类的实例。

多态的特点:

  • 对象类型和引用类型之间具有继承(类)/实现(接口)的关系
  • 引用类型变量发出的方法调用的到底是哪个类中的方法,必须在程序运行期间才能确定
  • 多态不能调用“只在子类存在但在父类不存在”的方法
  • 如果子类重写了父类的方法,真正执行的是子类覆盖的方法,如果子类没有覆盖父类的方法,执行的是父类的方法

6.7 接口和抽象类的共同点和区别

共同点 :

  • 都不能被实例化。
  • 都可以包含抽象方法。
  • 都可以有默认实现的方法(Java 8 可以用 default 关键在接口中定义默认方法)。

区别 :

  • 接口主要用于对类的行为进行约束,你实现了某个接口就具有了对应的行为。抽象类主要用于代码复用,强调的是所属关系。
  • 一个类只能继承一个类,但是可以实现多个接口。
  • 接口中的成员变量只能是 public static final 类型的,不能被修改且必须有初始值,而抽象类的成员变量默认 default,可在子类中被重新定义,也可被重新赋值。

6.8 浅拷贝

浅拷贝会在堆上创建一个新的对象(区别于引用拷贝的一点),不过,如果原对象内部的属性是引用类型的话,浅拷贝会直接复制内部对象的引用地址,也就是说拷贝对象和原对象共用同一个内部对象

6.9 深拷贝

深拷贝会完全复制整个对象,包括这个对象所包含的内部对象。

6.10 引用拷贝

引用拷贝就是两个不同的引用指向同一个对象。


7. Java 常见对象

7.1 Object

public final native Class<?> getClass()//native方法,用于返回当前运行时对象的Class对象,使用了final关键字修饰,故不允许子类重写。

public native int hashCode() //native方法,用于返回对象的哈希码,主要使用在哈希表中,比如JDK中的HashMap。
public boolean equals(Object obj)//用于比较2个对象的内存地址是否相等,String类对该方法进行了重写用户比较字符串的值是否相等。

protected native Object clone() throws CloneNotSupportedException//naitive方法,用于创建并返回当前对象的一份拷贝。一般情况下,对于任何对象 x,表达式 x.clone() != x 为true,x.clone().getClass() == x.getClass() 为true。Object本身没有实现Cloneable接口,所以不重写clone方法并且进行调用的话会发生CloneNotSupportedException异常。

public String toString()//返回类的名字@实例的哈希码的16进制的字符串。建议Object所有的子类都重写这个方法。

public final native void notify()//native方法,并且不能重写。唤醒一个在此对象监视器上等待的线程(监视器相当于就是锁的概念)。如果有多个线程在等待只会任意唤醒一个。

public final native void notifyAll()//native方法,并且不能重写。跟notify一样,唯一的区别就是会唤醒在此对象监视器上等待的所有线程,而不是一个线程。

public final native void wait(long timeout) throws InterruptedException//native方法,并且不能重写。暂停线程的执行。注意:sleep方法没有释放锁,而wait方法释放了锁 。timeout是等待时间。

public final void wait(long timeout, int nanos) throws InterruptedException//多了nanos参数,这个参数表示额外时间(以毫微秒为单位,范围是 0-999999)。 所以超时的时间还需要加上nanos毫秒。

public final void wait() throws InterruptedException//跟之前的2个wait方法一样,只不过该方法一直等待,没有超时时间这个概念

protected void finalize() throws Throwable { }//实例被垃圾回收器回收的时候触发的操作

7.2 String

StringBuilder 与 StringBuffer 都继承自 AbstractStringBuilder 类,在AbstractStringBuilder 中也是使用字符数组保存字符串,不过没有使用 final 和 private关键字修饰,最关键的是这个 AbstractStringBuilder 类还提供了很多修改字符串的方法比如 append 方法。

7.2.1 String是不可变

String 类中使用 final 关键字修饰字符数组来保存字符串

public final class String implements java.io.Serializable, Comparable<String>, CharSequence {
    private final char value[];
	//...
}

被 final 关键字修饰的类不能被继承,修饰的方法不能被重写,修饰的变量是基本数据类型则值不能改变,修饰的变量是引用类型则不能再指向其他对象。因此,final 关键字修饰的数组保存字符串并不是 String 不可变的根本原因,因为这个数组保存的字符串是可变的(final 修饰引用类型变量的情况)。

String 真正不可变有下面几点原因:

  • 保存字符串的数组被 final 修饰且为私有的,并且String 类没有提供/暴露修改这个字符串的方法。
  • String 类被 final 修饰导致其不能被继承,进而避免了子类破坏 String 不可变。

7.2.2 线程安全性

String 中的对象是不可变的,也就可以理解为常量,线程安全。AbstractStringBuilder 是 StringBuilder 与 StringBuffer 的公共父类,定义了一些字符串的基本操作,如 expandCapacity、append、insert、indexOf 等公共方法。StringBuffer 对方法加了同步锁或者对调用的方法加了同步锁,所以是线程安全的。StringBuilder 并没有对方法进行加同步锁,所以是非线程安全的。

7.2.3 性能

每次对 String 类型进行改变的时候,都会生成一个新的 String 对象,然后将指针指向新的 String 对象。StringBuffer 每次都会对 StringBuffer 对象本身进行操作,而不是生成新的对象并改变对象引用。相同情况下使用 StringBuilder 相比使用 StringBuffer 仅能获得 10%~15% 左右的性能提升,但却要冒多线程不安全的风险。

总结:

  • 操作少量的数据: 适用 String
  • 单线程操作字符串缓冲区下操作大量数据: 适用 StringBuilder
  • 多线程操作字符串缓冲区下操作大量数据: 适用 StringBuffer

7.2.4 字符串拼接

Java 语言本身并不支持运算符重载,“+”和“+=”是专门为 String 类重载过的运算符,也是 Java 中仅有的两个重载过的元素符。

对象引用和“+”的字符串拼接方式,实际上是通过 StringBuilder 调用 append() 方法实现的,拼接完成之后调用 toString() 得到一个 String 对象 。

在循环内使用“+”进行字符串的拼接的话,存在比较明显的缺陷:编译器不会创建单个 StringBuilder 以复用,会导致创建过多的 StringBuilder 对象。直接使用 StringBuilder 对象进行字符串拼接的话,就不会存在这个问题了。

7.2.5 String#equals() 和 Object#equals()

String 中的 equals 方法是被重写过的,比较的是 String 字符串的值是否相等。 Object 的 equals 方法是比较的对象的内存地址。

7.2.6 字符串常量池的作用

字符串常量池 是 JVM 为了提升性能和减少内存消耗针对字符串(String 类)专门开辟的一块区域,主要目的是为了避免字符串的重复创建。

JDK1.7 之前运行时常量池逻辑包含字符串常量池存放在方法区。JDK1.7 的时候,字符串常量池被从方法区拿到了堆中。


8. 泛型

8.1 Java 泛型(generics)

JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时检测到非法的类型。泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数。

8.2 泛型擦除

Java 的泛型是伪泛型,这是因为 Java 在运行期间,所有的泛型信息都会被擦掉,这也就是通常所说泛型擦除 。

8.3 泛型类

//此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型
//在实例化泛型类时,必须指定T的具体类型
public class Generic<T> {
    private T key;
    public Generic(T key) {
        this.key = key;
    }
    public T getKey() {
        return key;
    }
}

8.4 泛型接口

public interface Generator<T> {
    public T method();
}

8.5 泛型方法

public static <E> void printArray(E[] inputArray) {
    for (E element : inputArray) {
        System.out.printf("%s ", element);
    }
    System.out.println();
}

8.6 常用的通配符

  • ? 表示不确定的 Java 类型
  • T (type) 表示具体的一个 Java 类型
  • K V (key value) 分别代表 Java 键值中的 Key Value
  • E (element) 代表 Element

9. 反射

赋予了我们在运行时分析类以及执行类中方法的能力。
通过反射你可以获取任意一个类的所有属性和方法,你还可以调用这些方法和属性。

9.1 反射机制优缺点

  • 优点 : 可以让咱们的代码更加灵活、为各种框架提供开箱即用的功能提供了便利
  • 缺点 :让我们在运行时有了分析操作类的能力,这同样也增加了安全问题。反射的性能也要稍差点

10. 注解

Annontation (注解) 是Java5 开始引入的新特性,可以看作是一种特殊的注释,主要用于修饰类、方法或者变量。

注解只有被解析之后才会生效,常见的解析方法有两种:

  • 编译期直接扫描 :编译器在编译 Java 代码的时候扫描对应的注解并处理,比如某个方法使用@Override 注解,编译器在编译的时候就会检测当前的方法是否重写了父类对应的方法。
  • 运行期通过反射处理 :像框架中自带的注解(比如 Spring 框架的 @Value 、@Component)都是通过反射来进行处理的。

11. 异常

Java的一些常识_第4张图片

11.1 Exception 和 Error

在 Java 中,所有的异常都有一个共同的父类 java.lang 包中的 Throwable 类。Throwable 类有两个重要的子类:

  • Exception :程序本身可以处理的异常,可以通过 catch 来进行捕获。Exception 又可以分为 Checked Exception (受检查异常,必须处理) 和 Unchecked Exception (不受检查异常,可以不处理)。
  • Error :Error 属于程序无法处理的错误 ,不建议通过catch捕获 。例如Java 虚拟机运行错误(Virtual MachineError)、虚拟机内存不够错误(OutOfMemoryError)、类定义错误(NoClassDefFoundError)等 。这些异常发生时,Java 虚拟机(JVM)一般会选择线程终止。

11.2 Checked Exception 和 Unchecked Exception

Checked Exception 即受检查异常,Java 代码在编译过程中,如果受检查异常没有被 catch/throw 处理的话,就没办法通过编译 。

常见的受检查异常有: IO 相关的异常、ClassNotFoundException 、SQLException…。

Unchecked Exception 即 不受检查异常 ,Java 代码在编译过程中 ,我们即使不处理不受检查异常也可以正常通过编译。

RuntimeException 及其子类都统称为非受检查异常,例如:NullPointerException、NumberFormatException(字符串转换为数字)、ArrayIndexOutOfBoundsException(数组越界)、ClassCastException(类型转换错误)、ArithmeticException(算术错误)等。

11.3 Throwable 类常用方法

  • String getMessage(): 返回异常发生时的简要描述
  • String toString(): 返回异常发生时的详细信息
  • String getLocalizedMessage(): 返回异常对象的本地化信息。使用 Throwable 的子类覆盖这个方法,可以生成本地化信息。如果子类没有覆盖该方法,则该方法返回的信息与 getMessage()返回的结果相同
  • void printStackTrace(): 在控制台上打印 Throwable 对象封装的异常信息

11.4 try-catch-finally

  • try块: 用于捕获异常。其后可接零个或多个 catch 块,如果没有 catch 块,则必须跟一个 finally 块。
  • catch块: 用于处理 try 捕获到的异常。
  • finally 块: 无论是否捕获或处理异常,finally 块里的语句都会被执行。当在 try 块或 catch 块中遇到 return 语句时,finally 语句块将在方法返回之前被执行。

不要在 finally 语句块中使用 return! 当 try 语句和 finally 语句中都有 return 语句时,try 语句块中的 return 语句会被忽略。这是因为 try 语句中的 return 返回值会先被暂存在一个本地变量中,当执行到 finally 语句中的 return 之后,这个本地变量的值就变为了 finally 语句中的 return 返回值。

11.5 finally

在某些情况下,finally 中的代码不会被执行。
比如说 finally 之前虚拟机被终止运行的话,finally 中的代码就不会被执行。
或程序所在的线程死亡。
或关闭 CPU。

11.6 使用 try-with-resources 代替try-catch-finally

面对必须要关闭的资源,我们总是应该优先使用 try-with-resources 而不是try-finally。随之产生的代码更简短,更清晰,产生的异常对我们也更有用。try-with-resources语句让我们更容易编写必须要关闭的资源的代码,若采用try-finally则几乎做不到这点。

try -catch -finally

//读取文本文件的内容
Scanner scanner = null;
try {
    scanner = new Scanner(new File("D://read.txt"));
    while (scanner.hasNext()) {
        System.out.println(scanner.nextLine());
    }
} catch (FileNotFoundException e) {
    e.printStackTrace();
} finally {
    if (scanner != null) {
        scanner.close();
    }
}

try-with-resources

try (Scanner scanner = new Scanner(new File("test.txt"))) {
    while (scanner.hasNext()) {
        System.out.println(scanner.nextLine());
    }
} catch (FileNotFoundException fnfe) {
    fnfe.printStackTrace();
}

当然多个资源需要关闭的时候,使用 try-with-resources 实现起来也非常简单,如果你还是用try-catch-finally可能会带来很多问题。通过使用分号分隔,可以在try-with-resources块中声明多个资源。


12. I/O

12.1 序列化、反序列化

需要持久化 Java 对象比如将 Java 对象保存在文件中,或者在网络传输 Java 对象,这些场景都需要用到序列化。

  • 序列化: 将数据结构或对象转换成二进制字节流的过程
  • 反序列化:将在序列化过程中所生成的二进制字节流转换成数据结构或者对象的过程

序列化的主要目的是通过网络传输对象或者说是将对象存储到文件系统、数据库、内存中。

Java的一些常识_第5张图片

12.2 字段不想进行序列化

对于不想进行序列化的变量,使用 transient 关键字修饰。

transient 关键字的作用是:阻止实例中那些用此关键字修饰的的变量序列化;当对象被反序列化时,被 transient 修饰的变量值不会被持久化和恢复。

注意:

  • transient 只能修饰变量,不能修饰类和方法。
  • transient 修饰的变量,在反序列化后变量值将会被置成类型的默认值。例如,如果是修饰 int 类型,那么反序列后结果就是 0。
  • static 变量因为不属于任何对象(Object),所以无论有没有 transient 关键字修饰,均不会被序列化。

12.3 IO 流分种类

  • 按照流的流向分,可以分为输入流和输出流
  • 按照操作单元划分,可以划分为字节流和字符流
  • 按照流的角色划分为节点流和处理流

InputStream/Reader: 所有的输入流的基类,前者是字节输入流,后者是字符输入流。
OutputStream/Writer: 所有输出流的基类,前者是字节输出流,后者是字符输出流。

Java的一些常识_第6张图片

12.4 字符流

字符流是由 Java 虚拟机将字节转换得到的,问题就出在这个过程还算是非常耗时,并且,如果我们不知道编码类型就很容易出现乱码问题。所以, I/O 流就干脆提供了一个直接操作字符的接口,方便我们平时对字符进行流操作。如果音频文件、图片等媒体文件用字节流比较好,如果涉及到字符的话使用字符流比较好。

你可能感兴趣的:(Java,java)