自动驾驶中的车道线检测算法汇总

自动驾驶中的车道线检测算法汇总_第1张图片

对近两年来车道线检测算法进行汇总,后期将会保持不断更新~
1、Efficient Road Lane Marking Detection with Deep Learning

2、VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition

3、Semi-Local 3D Lane Detection and Uncertainty Estimation

4、Robust Lane Marking Detection Algorithm Using Drivable Area Segmentation and Extended SLT

5、3D-LaneNet: End-to-End 3D Multiple Lane Detection

6、Agnostic Lane Detection

7、Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks

8、End to End Video Segmentation for Driving : Lane Detection For Autonomous Car

9、Multiple Lane Detection Algorithm Based on Optimised Dense Disparity Map Estimation

10、Real-time stereo vision-based lane detection system

11、LaneNet: Real-Time Lane Detection Networks for Autonomous Driving

12、Towards End-to-End Lane Detection: an Instance Segmentation Approach

13、A Robust Lane Detection and Departure Warning System

14、Real time Detection of Lane Markers in Urban Streets

15、LaNet: Real-time Lane Identification by Learning Road SurfaceCharacteristics from Accelerometer Data

16、Improving Vision-based Self-positioning in Intelligent Transportation Systems via Integrated Lane and Vehicle Detection

17、Key Points Estimation and Point Instance Segmentation Approach for Lane Detection

18、Lane Detection in Low-light Conditions Using an Efficient Data Enhancement : Light Conditions Style Transfer

19、End-to-end Lane Detection through Differentiable Least-Squares Fitting

20、Real-time Lane Marker Detection Using Template Matching with RGB-D Camera

21、LIDAR-Camera Fusion for Road Detection Using Fully Convolutional Neural Networks

往期干货资源:

汇总 | 国内最全的3D视觉学习资源,涉及计算机视觉、SLAM、三维重建、点云处理、姿态估计、深度估计、3D检测、自动驾驶、深度学习(3D+2D)、图像处理、立体视觉、结构光等方向!

汇总 | 3D目标检测(基于点云、双目、单目)

汇总 | 6D姿态估计算法(基于点云、单目、投票方式)

汇总 | 三维重建算法实战(单目重建、立体视觉、多视图几何)

汇总 | 3D点云后处理算法(匹配、检索、滤波、识别)

汇总 | SLAM算法(视觉里程计、后端优化、回环检测)

汇总 | 深度学习&自动驾驶前沿算法研究(检测、分割、多传感器融合)

汇总 | 相机标定算法

汇总 | 事件相机原理

汇总 | 结构光经典算法

汇总 | 缺陷检测常用算法与实战技巧

你可能感兴趣的:(深度学习,自动驾驶,深度学习)