- 基于多模态大模型的不完整多组学数据特征选择策略
m0_65156252
人工智能
基于多模态大模型的不完整多组学数据特征选择策略是当前生物信息学和精准医学领域的一个前沿问题。在多组学数据中,通常包括不同层次的生物信息(如基因组、转录组、蛋白质组、代谢组等),这些数据通常存在缺失、噪声或不一致的情况。因此,如何有效地在这些不完整的数据中进行特征选择,是实现精确疾病预测和个性化治疗的关键。结合多模态大模型(如自监督学习、图神经网络、Transformer等)可以有效解决这一问题。以
- 颠覆认知的AI黑科技:这3项突破正在改写人类生存法则
小筱在线
人工智能人工智能科技
当硅基生命按下快进键:三大AI黑科技重构人类文明底层逻辑在青藏高原海拔5000米的冰川实验室里,AI系统正以每秒数百万次的频率模拟全球冰川消融轨迹;纽约证券交易所的地下机房中,量子神经网络以人类无法理解的维度重构全球经济模型;东京某生物实验室的恒温箱内,由AI设计的全新蛋白质结构正在自我复制。这些看似科幻的场景,正在成为我们这个时代的日常图景。当AI技术突破奇点临界值,人类文明正在经历一场静默而彻
- 分子动力学仿真软件:GROMACS_(1).GROMACS基础知识
kkchenjj
分子动力学2仿真模拟模拟仿真分子动力学
GROMACS基础知识1.GROMACS简介GROMACS(GROningenMAchineforChemicalSimulations)是一款广泛用于分子动力学仿真的开源软件。它主要用于模拟蛋白质、脂质、核酸以及其他生物分子系统的动力学行为。GROMACS以其高效、灵活和强大的功能而闻名,支持大规模并行计算,适用于从小分子到复杂生物体系的多种应用场景。1.1GROMACS的历史和发展GROMAC
- 久和生医资产审核稳步推进,官方发声力破谣言迷雾
都市前线
人工智能
在生物医学领域,久和生医的名字可谓耳熟能详。近日,该公司资产审核工作的最新进展再次引发了业界的广泛关注。自2月23日起,久和生医正式拉开了资产审核的序幕,并计划于3月4日圆满收官,随后将进入拨款提现阶段。然而,在这一过程中,网络上谣言四起,让不少会员心生疑虑。对此,久和生医官方及时发声,力破谣言迷雾,为会员吃下定心丸。资产审核,对于任何一家企业来说,都是一项至关重要且严谨的工作。久和生医自然也不例
- 重大安全威胁!全球近5W个访问管理系统存在严重安全漏洞
FreeBuf-
安全网络web安全
荷兰IT安全咨询公司Modat发现,全球范围内部署的约49,000个访问管理系统(AMS)存在严重的安全漏洞。这些系统本应通过密码、生物识别和多因素认证等身份验证方法控制建筑物访问,然而却因关键配置错误导致敏感数据暴露,使设施面临未经授权进入的风险。此次发现暴露了一个跨越多个领域的重大全球性安全威胁,涉及医疗、教育、制造、建筑、石油行业和政府机构等。漏洞带来双重威胁访问管理系统通过多种方法验证用户
- 如何利用PubMed作为信息检索器 — 结合LangChain实现高效文献查询
bhawfgrcbtwny
langchainpython
如何利用PubMed作为信息检索器—结合LangChain实现高效文献查询引言PubMed是由美国国家生物技术信息中心(NCBI)和国家医学图书馆(NLM)维护的一个涵盖超过3500万篇生物医学文献的数据库。对于研究人员和开发者而言,如何高效地从如此庞大的数据库中提取有用的信息是一项挑战。在本文中,我们将探讨如何使用LangChain库中的PubMedRetriever类,从PubMed查询并返回
- 2025 年政府工作报告中的科技要点解读以及机会点
番茄老夫子
科技人工智能
2025年政府工作报告中的科技要点主要包括以下方面:培育未来产业:建立未来产业投入增长机制,培育生物制造、量子科技、具身智能、6G等未来产业,体现了对前沿科技领域的高度重视,旨在抢占未来科技和产业发展的制高点,这些领域具有巨大的发展潜力和创新空间,有望为经济增长带来新的动力。壮大新兴产业:深入推进战略性新兴产业融合集群发展,开展新技术新产品新场景大规模应用示范行动,推动商业航天、低空经济等新兴产业
- 百奥赛图的AI野心:用2500万抗体序列改写医药研发规则
港股研究社
人工智能大数据
在生物医药领域,技术突破的浪潮从未停歇。随着DeepSeek的爆火,AI技术也正在深度渗透生物医药行业。近日,百奥赛图作为行业先锋,率先DeepSeek平台本地化部署,结合“千鼠万抗”计划,打造“AI+抗体药物研发”的全新模式,大幅提升药物研发效率与成功率,引领行业迈向智能化创新时代。回顾百奥赛图的发展之路,公司创始人沈月雷博士,凭借十余年深耕免疫学和基因编辑领域的经验,带领团队从锻造靶点人源化小
- Spike Neural Network Introduction and Research Directions
Debug_Snail
SNNNeuralnetwork人工智能AIGC
1.SNNs是一类神经网络,其中的神经元通过脉冲(spikes)来传递信息,而不是像传统的人工神经网络中那样使用实数值激活。SNNs更接近生物学上的神经系统,因为生物神经元也是通过电信号脉冲来传递信息的。与传统神经网络相比,SNNs具有以下几个特点:更低的功耗-因为只在发生脉冲时才激活神经元,所以整体功耗会比传统神经网络低很多。这使得SNNs很适合应用在对功耗要求非常严格的场景,如边缘计算。时序编
- 三种优化算法
旅者时光
算法算法python开发语言
本文将总结遗传算法、粒子群算法、模拟退火三种优化算法的核心思路,并使用python完整实现。实际上,越来越多的优秀算法已经被封装为一个易用的接口。很多时候,一行代码就能实现我们的需求。但了解这些算法的基本逻辑,能够使用最基本的代码实现它。无论对于提升我们的编程能力还是解决问题的能力,都会大有裨益。甚至,改变我们思考问题的方式。1、遗传算法遗传算法,顾名思义,就是借鉴了生物通过遗传变异来逐渐适应环境
- 用共线性分析的方法进行古基因组重构(前置知识与准备)
ALPH_
古基因组重构重构wgdi生物信息基因组r语言-4.2.1r语言数据分析
一、什么是全基因组加倍事件许多生物目前是多倍体,或者具有多倍体祖先并且现在具有次生的“二倍体化”基因组。这一发现令人惊讶,因为保留整个基因组重复(WGD)非常罕见,这表明多倍体往往是进化的死胡同。我们认为,古代基因组倍增可能只在非常特定的条件下能够存活,但是,无论何时建立,它们可能对物种多样化产生显著影响,并导致生物复杂性增加和进化新奇性的起源。全基因组复制(WGD)或多倍体,随后伴随基因丢失和二
- Python第十六课:深度学习入门 | 神经网络解密
程之编
Python全栈通关秘籍python神经网络青少年编程
本节目标理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生)1.神经元对比生物神经元人工神经元树突接收信号输入层接收特征数据细胞体整合信号加权求和(∑(权重×输入)+偏置)轴突传递电信号激活函数处理输出2.核心组件解析激活函数:神经元的"开关"(如ReLU:max
- CAS:1178931-50-4,GalNAz-1-P,N-azidoacetylgalactosamine tetraacylated 1-phosphate
陕西星贝爱科
GalNAz-1-P1178931-50-4
GalNAz-1-P是一种化合物,通常用于糖基化生物学研究中。以下是关于它的详细介绍:基本信息中文名称:GalNAz-1-P,N-azidoacetylgalactosaminetetraacylated1-phosphate英文名称:GalNAz-1-P,N-azidoacetylgalactosaminetetraacylated1-phosphateCAS号:1178931-50-4化学结构
- 基于BMO磁性细菌优化的WSN网络最优节点部署算法matlab仿真
软件算法开发
MATLAB程序开发#网络仿真matlabBMO磁性细菌优化WSN网络最优节点部署
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述无线传感器网络(WirelessSensorNetwork,WSN)由大量分布式传感器节点组成,用于监测物理或环境状况。节点部署是WSN的关键问题,合理的部署可以提高网络的覆盖范围、连通性和能量效率。磁性细菌是一类能够感知地球磁场并沿磁场方向游动的微生物。在BMO算法中,模拟磁性细菌的这种趋磁
- 多宠识别:基于计算机视觉的智能宠物管理系统架构解析
深圳市快瞳科技有限公司
计算机视觉宠物系统架构
一、行业痛点与技术方案演进在多宠家庭场景中,传统方案面临三大技术瓶颈:1.生物特征混淆:同品种/毛色宠物识别准确率低于65%2.动态场景适应:进食/奔跑状态下的误检率达30%+3.数据孤岛问题:离线设备无法实现持续学习优化快瞳科技采用**双模态视觉融合架构**,结合轻量化YOLOv7-Tiny模型与CLIP多模态大模型,实现:-98.7%的跨品种宠物识别准确率(CVPR2024最新测试数据)-单次
- Laurdan是一种可以研究膜环境极性变化的荧光探针
强化生物实验室
广度优先leetcode决策树最小二乘法排序算法支持向量机
一、试剂描述Laurdan是一种极性敏感的荧光探针,由西安强化生物科技开发,是一种可以研究膜环境极性变化的荧光探针。Laurdan由一条月桂酸长链连接到一个萘分子上组合而成。脂肪酸的疏水性尾使探针能牢牢嵌入脂质双分子层;而分子上的萘部分定位在膜磷脂的甘油骨架上。二、试剂信息英文名:Laurdan中文名:6-丙烯酰基-2-二甲氨基萘CAS号:74515-25-6分子式:C24H35NO分子量:353
- 神经网络图像识别技术,神经网络如何识别图像
小浣熊的技术
神经网络机器学习深度学习
什么是神经网络神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法
- 人工神经网络的基本属性,神经网络四个基本属性
小浣熊的技术
神经网络机器学习深度学习
什么是神经网络神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法
- 神经网络:让机器学会“观察与思考“的数字大脑
安意诚Matrix
机器学习笔记神经网络人工智能深度学习
你可以把神经网络想象成一个会学习的"电子大脑",它的工作原理既神秘又有趣:1.从单个神经元开始就像人类大脑由神经元组成,神经网络的基本单元是"人工神经元"。每个神经元接收多个输入信号(比如图片的像素值),每个信号被赋予不同的"权重"(重要性),然后通过类似"加权投票"的方式计算总和。当总和超过某个阈值时,神经元就会"激活",输出一个信号。这个过程模仿了生物神经元的"全或无"放电机制。2.神经元的超
- 深度学习笔记——神经网络
肆——
深度学习深度学习笔记神经网络人工智能python
本文为在拓尔思智能举办的训练营中学习内容的总结,部分内容摘自百度百科个人在这里推荐一个好用的软件,Trae,主要是免费。人工神经元是人工神经网络的基本单元。模拟生物神经元,人工神经元有1个或者多个输入(模拟多个树突或者多个神经元向该神经元传递神经冲动);对输入进行加权求和(模拟细胞体将神经信号进行积累和树突强度不同);对输入之和使用激活函数计算活性值(模拟细胞体产生兴奋或者抑制);输出活性值并传递
- 信息管理之信息管理者的好习惯,轻松管理项目,实现知识复利
Linzerox
信息论笔记数据库职场和发展
总结在保持内心守序的同时,我们还须遵循一套外部秩序——由基本原则和行为准则构成的规则体系。本文介绍的体系给出三种好的习惯,帮助我们减轻认知负荷,释放思维能力。三种好的习惯:项目清单:关注项目启动和结束阶段,给出两种清单工具(启动清单和结束清单),确保项目从启动到收尾整个过程的前后一致性,并强化成果运用。使用清单工具,不必担心生物大脑没有记全,释放大脑压力,保证完成质量。定期回顾:定期回顾你的工作和
- 生物信息学工作流(Bioinformatics Workflow):概念、历史、现状与展望?
lisw05
生物信息学生物信息学工作流
李升伟整理1.引言生物信息学工作流是指通过一系列计算步骤和工具,对生物学数据进行处理、分析和解释的系统化流程。随着高通量测序技术的普及和生物数据的爆炸式增长,生物信息学工作流在基因组学、转录组学、蛋白质组学等领域中扮演着至关重要的角色。它不仅提高了数据分析的效率,还为生命科学研究提供了新的视角和方法。2.生物信息学工作流的概念生物信息学工作流的核心是将复杂的生物学数据分析任务分解为多个可管理的步骤
- 体育数据分析:竞技表现优化与商业价值挖掘的技术范式
Tina0898
数据分析数据挖掘
体育数据分析作为一门交叉学科,正在重塑现代体育产业的发展轨迹。通过多源数据采集、机器学习建模和商业智能分析,体育数据分析已经形成了完整的技术体系和应用生态。本文将深入探讨体育数据分析的技术架构、应用场景和商业价值。一、数据采集与处理技术架构现代体育数据采集系统采用分布式架构,集成了计算机视觉、惯性测量单元(IMU)和生物电传感器等多模态数据源。计算机视觉系统通过高速摄像机和深度学习算法,可实现运动
- 羧基/氨基化sio2荧光微球:是一种表面修饰有羧基或氨基的荧光二氧化硅微球
星贝爱科生物-xb
氨基化sio2荧光微球羧基化sio2荧光微球
羧基/氨基化SiO₂荧光微球是一种表面修饰有羧基或氨基的荧光二氧化硅微球,具有特别的物理化学性质和广泛的应用前景,以下为你详细介绍:基本信息外观:通常为白色粉末或胶体溶液,在特定波长的激发光下可发出荧光。粒径:粒径可在纳米到微米级别进行调控,常见的粒径范围包括20nm-200μm等。表面性质:表面修饰的羧基或氨基赋予微球良好的生物相容性和化学反应活性,使其能够与生物分子或其他材料进行特异性结合。制
- 总理在政府工作报告中提到具身智能,so!这是个什么玩意?竟也能帮我发高分顶会
前沿速递AI
具身智能ai人工智能
3月5日,李强总理在政府工作报告时提到,“将建立未来产业投入增长机制,培育生物制造、量子科技、具身智能、6G等未来产业”。在未来具身智能势必会有爆发式的发展。从学术研究的角度来看,具身智能已成为各大顶会的热门议题。以CVPR2025为例,具身智能成功跻身热门研究领域前三,充分展现了其重要性。那么总理提到的具身智能是个什么呢?目前,具身智能的研究主要集中在四个核心方向:具身感知、具身互动、具身智能体
- RK3568与掌静脉模块:解锁安防新未来
计算机学长
瑞星微芯片AndroidRK3568Android
引言在当今数字化时代,随着人工智能和物联网技术的飞速发展,各类智能设备如雨后春笋般涌现,为我们的生活和工作带来了极大的便利。在这些智能设备的背后,高性能的处理器和先进的生物识别技术起着关键作用。RK3568处理器作为一款中高端的芯片,以其出色的性能和丰富的接口,在物联网、安防监控、智能家居等众多领域得到了广泛应用。而掌静脉模块作为一种高精度、高安全性的生物识别技术,正逐渐成为身份验证和安全控制领域
- 【MATLAB源码-第269期】基于matlab的鱼鹰优化算法(OOA)无人机三维路径规划,输出做短路径图和适应度曲线.
Matlab程序猿小助手
路径规划matlab算法开发语言人工智能无人机网络机器人
操作环境:MATLAB2022a1、算法描述鱼鹰优化算法(OspreyOptimizationAlgorithm,简称OOA)是一种新兴的基于自然界生物行为的智能优化算法,其灵感来自于鱼鹰这种海鸟在捕猎过程中的独特行为。鱼鹰是一种生活在全球范围内的猛禽,以鱼类为主食。它们的捕猎方式非常高效和精准,能够通过快速调整飞行路径和俯冲角度来捕捉猎物。鱼鹰的捕猎行为不仅表现出高度的灵活性,还能在不同环境中表
- 遗传算法基础讲解
HH予
深度学习
一、遗传算法基础1.什么是遗传算法?一种模拟生物进化过程的优化算法,基于达尔文的“自然选择”和“遗传学理论”。核心思想:通过选择(优胜劣汰)、交叉(基因重组)、变异(基因突变)操作,逐步逼近问题的最优解。2.为什么用遗传算法?适用性强:解决复杂的非线性、多峰、离散或连续优化问题。无需梯度信息:对目标函数的数学性质要求低,适合黑箱优化。全局搜索能力:通过种群并行搜索,避免陷入局部最优,适合多维优化。
- 【数据挖掘】异构图与同构图
dundunmm
数据挖掘深度学习数据挖掘知识图谱人工智能
在图论(GraphTheory)中,异构图(HeterogeneousGraph)和同构图(HomogeneousGraph)是两种不同的图结构概念,它们的主要区别在于节点和边的类型是否单一。1.异构图(HeterogeneousGraph)定义:异构图是指节点类型和/或边类型不同的图,通常用于建模具有多种实体和关系的复杂系统。例如,在社交网络、知识图谱、生物网络等领域,数据往往包含多个类别的实体
- AbMole肿瘤研究综述(二):靶向抑制剂与人源单抗,开启肿瘤研究新篇章
AbMole
AbMole生物化学生物试剂科研生物实验
肿瘤的研究一直是生命科学和基础医学领域中的热门话题,随着分子生物学和肿瘤生物学等学科的发展,人们逐渐明确了一系列与肿瘤发生和转移等密切关系的基因、蛋白,包括多种受体酪氨酸激酶(RTKs,如EGFR、ALK、c-Met、TRK、BCR-ABL等)和非RTKs(如BCR-ABL、BTK、CDK等),以及一些重要的细胞信号通路,如RAS/RAF/MEK、PI3K/mTOR等。AbMole向大家介绍围绕上
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出