今天简单介绍date_range freq 几个参数实例
函数语法:
date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs)
几个主要参数:
参数 | 类型 | 说明 |
---|---|---|
start | str | 开始日期 |
end | str | 结束日期 |
periods | int | 时间数量 |
freq | str | 时间频率 |
closed | str | 闭合区间, 取值:{None, ‘left’, ‘right’} |
注意:start、end、periods三个参数必须取两个
freq 一般取值:
取值 | 说明 |
---|---|
M | 月 |
B | 工作日 |
W | 星期 |
D | 天 |
H | 小时 |
T | 分钟 |
S | 秒 |
L | 毫秒 |
pd.date_range(start='20220101', end='20220131', freq='b')
# 输出
DatetimeIndex(['2022-01-03', '2022-01-04', '2022-01-05', '2022-01-06',
'2022-01-07', '2022-01-10', '2022-01-11', '2022-01-12',
'2022-01-13', '2022-01-14', '2022-01-17', '2022-01-18',
'2022-01-19', '2022-01-20', '2022-01-21', '2022-01-24',
'2022-01-25', '2022-01-26', '2022-01-27', '2022-01-28',
'2022-01-31'],
dtype='datetime64[ns]', freq='B')
pd.date_range(start='20220101', end='20220131', freq='2d')
# 输出
DatetimeIndex(['2022-01-01', '2022-01-03', '2022-01-05', '2022-01-07',
'2022-01-09', '2022-01-11', '2022-01-13', '2022-01-15',
'2022-01-17', '2022-01-19', '2022-01-21', '2022-01-23',
'2022-01-25', '2022-01-27', '2022-01-29', '2022-01-31'],
dtype='datetime64[ns]', freq='2D')
pd.date_range(start='20220101', periods=10, freq='d')
# 输出
DatetimeIndex(['2022-01-01', '2022-01-02', '2022-01-03', '2022-01-04',
'2022-01-05', '2022-01-06', '2022-01-07', '2022-01-08',
'2022-01-09', '2022-01-10'],
dtype='datetime64[ns]', freq='D')
pd.date_range(start='20220101', periods=10, freq='M')
# 输出
DatetimeIndex(['2022-01-31', '2022-02-28', '2022-03-31', '2022-04-30',
'2022-05-31', '2022-06-30', '2022-07-31', '2022-08-31',
'2022-09-30', '2022-10-31'],
dtype='datetime64[ns]', freq='M')
pd.date_range(start='20220101', end='20220131', freq='d', closed='left')
# 输出
DatetimeIndex(['2022-01-01', '2022-01-02', '2022-01-03', '2022-01-04',
'2022-01-05', '2022-01-06', '2022-01-07', '2022-01-08',
'2022-01-09', '2022-01-10', '2022-01-11', '2022-01-12',
'2022-01-13', '2022-01-14', '2022-01-15', '2022-01-16',
'2022-01-17', '2022-01-18', '2022-01-19', '2022-01-20',
'2022-01-21', '2022-01-22', '2022-01-23', '2022-01-24',
'2022-01-25', '2022-01-26', '2022-01-27', '2022-01-28',
'2022-01-29', '2022-01-30'],
dtype='datetime64[ns]', freq='D')
其他参数可以自己试一下
def get_time_ranges(from_time, to_time, frequency):
from_time, to_time, frequency = pd.to_datetime(from_time), pd.to_datetime(to_time), frequency*60
time_range = list(pd.date_range(from_time, to_time, freq=f'{frequency}s'))
if to_time not in time_range:
time_range.append(to_time)
time_range = [item.strftime('%Y-%m-%d %H:%M:%S') for item in time_range]
time_ranges = []
for item in time_range:
f_time = item
t_time = (datetime.datetime.strptime(item, '%Y-%m-%d %H:%M:%S') + datetime.timedelta(seconds=frequency))
if t_time >= to_time:
t_time = to_time.strftime('%Y-%m-%d %H:%M:%S')
time_ranges.append([f_time, t_time])
break
time_ranges.append([f_time, t_time.strftime('%Y-%m-%d %H:%M:%S')])
return time_ranges
from_time = '2022-09-15 00:00:00'
to_time = '2022-09-15 23:59:59'
frequency = 5
get_time_ranges(from_time, to_time, frequency)
# 输出 一共288个区间
[['2022-09-15 00:00:00', '2022-09-15 00:05:00'],
['2022-09-15 00:05:00', '2022-09-15 00:10:00'],
['2022-09-15 00:10:00', '2022-09-15 00:15:00'],
['2022-09-15 00:15:00', '2022-09-15 00:20:00'],
['2022-09-15 00:20:00', '2022-09-15 00:25:00'],
['2022-09-15 00:25:00', '2022-09-15 00:30:00'],
...
['2022-09-15 23:40:00', '2022-09-15 23:45:00'],
['2022-09-15 23:45:00', '2022-09-15 23:50:00'],
['2022-09-15 23:50:00', '2022-09-15 23:55:00'],
['2022-09-15 23:55:00', '2022-09-15 23:59:59']]
def time_num(timeStamp):
timeStamp0 = timeStamp.split(' ')[0]
from_time = f'{timeStamp0} 00:00:00'
to_time = f'{timeStamp0} 23:59:59'
frequency = 5
time_ranges = get_time_ranges(from_time, to_time, frequency)
for idx,value in enumerate(time_ranges):
if value[0] < timeStamp <= value[1]:
return idx
return 0
time_num('2019-09-15 23:53:00')
# 输出
286
time_num('2022-09-10 10:53:00')
# 输出
130
以上就是本期为大家整理的全部内容了,赶快练习起来吧,如有疑问可后台联系小编,喜欢的朋友可以点赞、收藏也可以分享(注明出处)让更多人知道。