基于Pytorch实现猫狗分类

文章目录

  • 一、环境配置
  • 二、数据集的准备
  • 三、猫狗分类的实例
  • 四、实现分类预测测试
  • 五、参考资料

一、环境配置

  1. 安装Anaconda
    具体安装过程,请自行百度
  2. 配置Pytorch
    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch
    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision
    

二、数据集的准备

  1. 数据集的下载
    kaggle网站的数据集下载地址:
    https://www.kaggle.com/lizhensheng/-2000
    百度网盘下载
    链接:https://pan.baidu.com/s/13hw4LK8ihR6-6-8mpjLKDA
    密码:dmp4
  2. 数据集的分类
    将下载的数据集进行解压操作,然后进行分类
    分类如下(每个文件夹下包括cats和dogs文件夹)
    基于Pytorch实现猫狗分类_第1张图片

三、猫狗分类的实例

  1. 导入相应的库
    # 导入库
    import torch.nn.functional as F
    import torch.optim as optim
    import torch
    import torch.nn as nn
    import torch.nn.parallel
     
    import torch.optim
    import torch.utils.data
    import torch.utils.data.distributed
    import torchvision.transforms as transforms
    import torchvision.datasets as datasets
    
  2. 设置超参数
    # 设置超参数
    #每次的个数
    BATCH_SIZE = 20
    #迭代次数
    EPOCHS = 10
    #采用cpu还是gpu进行计算
    DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
  3. 图像处理与图像增强
     # 数据预处理
     
    transform = transforms.Compose([
        transforms.Resize(100),
        transforms.RandomVerticalFlip(),
        transforms.RandomCrop(50),
        transforms.RandomResizedCrop(150),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    ])
    
  4. 读取数据集和导入数据
    # 读取数据
     
    dataset_train = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\train', transform)
     
    print(dataset_train.imgs)
     
    # 对应文件夹的label
     
    print(dataset_train.class_to_idx)
     
    dataset_test = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\validation', transform)
     
    # 对应文件夹的label
     
    print(dataset_test.class_to_idx)
     
    # 导入数据
     
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
     
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)
    
  5. 定义网络模型
    # 定义网络
    class ConvNet(nn.Module):
        def __init__(self):
            super(ConvNet, self).__init__()
            self.conv1 = nn.Conv2d(3, 32, 3)
            self.max_pool1 = nn.MaxPool2d(2)
            self.conv2 = nn.Conv2d(32, 64, 3) 
            self.max_pool2 = nn.MaxPool2d(2) 
            self.conv3 = nn.Conv2d(64, 64, 3) 
            self.conv4 = nn.Conv2d(64, 64, 3) 
            self.max_pool3 = nn.MaxPool2d(2) 
            self.conv5 = nn.Conv2d(64, 128, 3) 
            self.conv6 = nn.Conv2d(128, 128, 3) 
            self.max_pool4 = nn.MaxPool2d(2) 
            self.fc1 = nn.Linear(4608, 512) 
            self.fc2 = nn.Linear(512, 1)
      
        def forward(self, x): 
            in_size = x.size(0) 
            x = self.conv1(x) 
            x = F.relu(x) 
            x = self.max_pool1(x) 
            x = self.conv2(x) 
            x = F.relu(x) 
            x = self.max_pool2(x) 
            x = self.conv3(x) 
            x = F.relu(x) 
            x = self.conv4(x) 
            x = F.relu(x) 
            x = self.max_pool3(x) 
            x = self.conv5(x) 
            x = F.relu(x) 
            x = self.conv6(x) 
            x = F.relu(x)
            x = self.max_pool4(x) 
            # 展开
            x = x.view(in_size, -1)
            x = self.fc1(x)
            x = F.relu(x) 
            x = self.fc2(x) 
            x = torch.sigmoid(x) 
            return x
     
    modellr = 1e-4
     
    # 实例化模型并且移动到GPU
     
    model = ConvNet().to(DEVICE)
     
    # 选择简单暴力的Adam优化器,学习率调低
     
    optimizer = optim.Adam(model.parameters(), lr=modellr)
    
  6. 调整学习率
    def adjust_learning_rate(optimizer, epoch):
     
        """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
        modellrnew = modellr * (0.1 ** (epoch // 5)) 
        print("lr:",modellrnew) 
        for param_group in optimizer.param_groups: 
            param_group['lr'] = modellrnew
    
  7. 定义训练过程
    # 定义训练过程
    def train(model, device, train_loader, optimizer, epoch):
     
        model.train() 
        for batch_idx, (data, target) in enumerate(train_loader):
     
            data, target = data.to(device), target.to(device).float().unsqueeze(1)
     
            optimizer.zero_grad()
     
            output = model(data)
     
            # print(output)
     
            loss = F.binary_cross_entropy(output, target)
     
            loss.backward()
     
            optimizer.step()
     
            if (batch_idx + 1) % 10 == 0:
     
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
     
                    epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
     
                        100. * (batch_idx + 1) / len(train_loader), loss.item()))
    # 定义测试过程
     
    def val(model, device, test_loader):
     
        model.eval()
     
        test_loss = 0
     
        correct = 0
     
        with torch.no_grad():
     
            for data, target in test_loader:
     
                data, target = data.to(device), target.to(device).float().unsqueeze(1)
     
                output = model(data)
                # print(output)
                test_loss += F.binary_cross_entropy(output, target, reduction='mean').item()
                pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device)
                correct += pred.eq(target.long()).sum().item()
     
            print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
                test_loss, correct, len(test_loader.dataset),
                100. * correct / len(test_loader.dataset)))
    
  8. 定义保存模型和训练
    # 训练
    for epoch in range(1, EPOCHS + 1):
     
        adjust_learning_rate(optimizer, epoch)
        train(model, DEVICE, train_loader, optimizer, epoch) 
        val(model, DEVICE, test_loader)
     
    torch.save(model, 'E:\\Cat_And_Dog\\kaggle\\model.pth')
    
    训练结果基于Pytorch实现猫狗分类_第2张图片

四、实现分类预测测试

  1. 准备预测的图片
  2. 进行测试
    from __future__ import print_function, division
    from PIL import Image
     
    from torchvision import transforms
    import torch.nn.functional as F
     
    import torch
    import torch.nn as nn
    import torch.nn.parallel
    # 定义网络
    class ConvNet(nn.Module):
        def __init__(self):
            super(ConvNet, self).__init__()
            self.conv1 = nn.Conv2d(3, 32, 3)
            self.max_pool1 = nn.MaxPool2d(2)
            self.conv2 = nn.Conv2d(32, 64, 3)
            self.max_pool2 = nn.MaxPool2d(2)
            self.conv3 = nn.Conv2d(64, 64, 3)
            self.conv4 = nn.Conv2d(64, 64, 3)
            self.max_pool3 = nn.MaxPool2d(2)
            self.conv5 = nn.Conv2d(64, 128, 3)
            self.conv6 = nn.Conv2d(128, 128, 3)
            self.max_pool4 = nn.MaxPool2d(2)
            self.fc1 = nn.Linear(4608, 512)
            self.fc2 = nn.Linear(512, 1)
     
        def forward(self, x):
            in_size = x.size(0)
            x = self.conv1(x)
            x = F.relu(x)
            x = self.max_pool1(x)
            x = self.conv2(x)
            x = F.relu(x)
            x = self.max_pool2(x)
            x = self.conv3(x)
            x = F.relu(x)
            x = self.conv4(x)
            x = F.relu(x)
            x = self.max_pool3(x)
            x = self.conv5(x)
            x = F.relu(x)
            x = self.conv6(x)
            x = F.relu(x)
            x = self.max_pool4(x)
            # 展开
            x = x.view(in_size, -1)
            x = self.fc1(x)
            x = F.relu(x)
            x = self.fc2(x)
            x = torch.sigmoid(x)
            return x
    # 模型存储路径
    model_save_path = 'E:\\Cat_And_Dog\\kaggle\\model.pth'
     
    # ------------------------ 加载数据 --------------------------- #
    # Data augmentation and normalization for training
    # Just normalization for validation
    # 定义预训练变换
    # 数据预处理
    transform_test = transforms.Compose([
        transforms.Resize(100),
        transforms.RandomVerticalFlip(),
        transforms.RandomCrop(50),
        transforms.RandomResizedCrop(150),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    ])
     
     
    class_names = ['cat', 'dog']  # 这个顺序很重要,要和训练时候的类名顺序一致
     
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
     
    # ------------------------ 载入模型并且训练 --------------------------- #
    model = torch.load(model_save_path)
    model.eval()
    # print(model)
     
    image_PIL = Image.open('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\test\\cats\\cat.1500.jpg')
    #
    image_tensor = transform_test(image_PIL)
    # 以下语句等效于 image_tensor = torch.unsqueeze(image_tensor, 0)
    image_tensor.unsqueeze_(0)
    # 没有这句话会报错
    image_tensor = image_tensor.to(device)
     
    out = model(image_tensor)
    pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in out]).to(device)
    print(class_names[pred])
    
  3. 预测结果
    基于Pytorch实现猫狗分类_第3张图片
    在这里插入图片描述
    从实际训练的过程来看,整体看准确度不高。而经过测试发现,该模型只能对于猫进行识别,对于狗则会误判。

五、参考资料

Pytorch自定义模型实现猫狗分类

你可能感兴趣的:(机器学习,pytorch)