图解数据分析 | 数据清洗与预处理

ShowMeAI研究中心

作者:韩信子@ShowMeAI
教程地址:http://www.showmeai.tech/tutorials/33
本文地址:http://www.showmeai.tech/article-detail/138
声明:版权所有,转载请联系平台与作者并注明出处

图解数据分析 | 数据清洗与预处理_第1张图片

数据分析分核心步骤分为:业务认知与数据探索、数据预处理、业务认知与数据探索等三个核心步骤。本文介绍第二个步骤——数据预处理。

不能想当然地认为数据是有效的。
在现实世界中,数据一般都是异构的、有缺失的、有量纲的。有些数据是从多个不同的数据源中获取的,这些异构数据,在各自的系统中都是正确无误的,只不过很有“个性”。

例如,有的系统中使用0和1,代表性别;而有些系统使用f和m代表性别。

  • 在使用数据之前,首先要对数据做规整处理,使用一致的单位、使用统一的文本来描述对象等。
  • 有些数据中包含大量重复的数据、缺失的数据、或者离群的数据,在开始分析数据之前,必须好好检查数据是否有效,并对数据做预处理操作。
  • 判断离群数值,并对其分析,有时会导致重大发现的产生。

一、数据规整

1.1 量纲

所谓量纲,简单来说,就是说数据的单位。有些数据是有量纲的,比如身高;而有些数据是没有量纲的,例如,男女比例。不同评价指标往往具有不同的量纲,数据之间的差别可能很大,不进行处理会影响到数据分析的结果。

图解数据分析 | 数据清洗与预处理_第2张图片

1.2 数据标准化

为了消除指标之间的量纲和取值范围差异对数据分析结果的影响,需要对数据进行标准化处理。就是说,把数据按照比例进行缩放,使之落入一个特定的区域,便于进行综合分析。

1.3 数据归一化

归一化是数据标准化中最简单的方式,目的是把数变为 [0, 1] 之间的小数,把有量纲的数据转换为无量纲的纯数量。归一化能够避免值域和量纲对数据的影响,便于对数据进行综合分析。

举例说明

举个简单的例子,在一次考试中,小明的语文成绩是100分、英语成绩是100分,单单从这考试成绩来评价,小明的语文和英语学的一样好。但是,如果你知道语文总分是150分,而英语总分只有120分,你还认为小明的语文和英语成绩是一样的吗?

对小明的成绩做简单的归一化:

采用离差归一化方法,公式是:y = (x-min) / range,这里设min=0,那么 range = max - min = max,由此推算出小明的语文成绩是4/6,英语成绩是5/6。因此,判定小明的英语成绩好于语文成绩。

还原到真实的场景中,各科的考题难度不尽相同,设班级中语文的最低分数是min语文 = 60,英语的最低分数是min英语 = 85,推算出小明的语文成绩是0.44 =(100-60)/(150-60),英语成绩是0.43 = (100-85)/(120-85),据此,可以判断小明的英语成绩稍差于语文成绩。

归一化的使得具有不同值域、不同量纲的数据之间具有可比性,使数据分析的结果更加全面,更接近事实。

二、数据异常值检测与分析

异常值在统计学上的全称是疑似异常值,也称作离群点(outlier),异常值的分析也称作离群点分析。

异常值分析是检验数据中是否存在不合常理的数据,在数据分析中,既不能忽视异常值的存在,也不能简单地把异常值从数据分析中剔除。重视异常值的出现,分析其产生的原因,常常成为发现新问题进而改进决策的契机。

图解数据分析 | 数据清洗与预处理_第3张图片

在上图中,离群点(outlier)跟其他观测点的偏离非常大。注意,离群点是异常的数据点,但是不一定是错误的数据点。

2.1 离群点检测

数据分析的数学基础

(1)描述性分析方法

在数据处理过程中,可以对数据做一个描述性分析,进而查看哪些数据是不合理的。常用的统计量是最大值和最小值,用来判断变量的取值是否超出了合理的范围。例如,客户年龄的最大值是199,该值存在异常。

(2)Z-Score方法

图解数据分析 | 数据清洗与预处理_第4张图片

[1] 3σ原则

在介绍Z-score方法之前,先了解一下 3σ原则——如果数据服从正态分布,在3σ原则下,异常值被定义为『一组测定值中,与平均值的偏差超过三倍标准差的值』。

在正态分布下,距离平均值3σ之外的值出现的概率为 P(|x-μ|>3σ)<=0.003,属于极个别的小概率事件。在3σ原则下,如果观测值与平均值的差值超过3倍标准差,那么可以将其视为异常值。

[2] Z-Score

如果数据不服从正态分布,则可以用『与平均值的距离是标准差的多少倍』来描述,这个倍数就是Z-scor。

Z-Score以标准差(σ)为单位,去度量某一原始分数(X)偏离平均数(μ)的距离。 Z-Score需要根据经验和实际情况来决定,通常把远离标准差3倍距离以上的数据点视为离群点。

Python代码的实现如下:

import numpy as np
import pandas as pd

def detect_outliers(data,threshold=3):
    mean_d = np.mean(data)
    std_d = np.std(data)
    outliers = []

    for y in data_d:
        z_score= (y - mean_d)/std_d 
        if np.abs(z_score) > threshold:
            outliers.append(y)
    return outliers

(3)IQR异常检测

四分位点内距(Inter-Quartile Range,IQR),是指在第75个百分点与第25个百分点的差值,或者说,上四分位数与下四分位数之间的差。

图解数据分析 | 数据清洗与预处理_第5张图片

IQR是统计分散程度的一个度量,分散程度通过需要借助箱线图(Box Plot)来观察。通常把小于 Q1-1.5_IQR 或者大于 Q3+1.5_IQR 的数据点视作离群点。

箱线图可以直观地看出数据集的以下重要特性:

  • 中心位置:中位数所在的位置就是数据集的中心,从中心位置向上或向下看,可以看出数据的倾斜程度。

  • 散布程度:箱线图分为多个区间,区间较短时,表示落在该区间的点较集中;

  • 对称性:如果中位数位于箱子的中间位置,那么数据分布较为对称;如果极值离中位数的距离较大,那么表示数据分布倾斜。

  • 离群点:离群点分布在箱线图的上下边缘之外。

使用Python实现,参数sr是Series类型的变量:

def detect_outliers(sr):
    q1 = sr.quantile(0.25)
    q3 = sr.quantile(0.75)
    iqr = q3-q1 #Interquartile range
    fence_low  = q1-1.5*iqr
    fence_high = q3+1.5*iqr
    outliers = sr.loc[(sr < fence_low) | (sr > fence_high)]
    return outliers

2.2 异常值处理

在数据处理时,异常值的处理方法,需视具体情况而定。有时,异常值也可能是正常的值,只不过异常的大或小,所以,很多情况下,要先分析异常值出现的可能原因,再判断如何处理异常值。处理的异常值的常用方法有:

  • 删除含有异常值的记录。

  • 插补,把异常值视为缺失值,使用缺失值的处理方法进行处理,好处是利用现有数据对异常值进行替换,或插补。

  • 不处理,直接在含有异常值的数据集上进行数据分析。

三、缺失值的处理

不是所有的数据都是完整的,有些观测值可能会缺失。对于缺失值,通常的处理方式是删除缺失值所在的数据行、填充缺失值、插补缺失值。

图解数据分析 | 数据清洗与预处理_第6张图片

资料与代码下载

本教程系列的代码可以在ShowMeAI对应的 github中下载,可本地python环境运行。能访问Google的宝宝也可以直接借助google colab一键运行与交互操作学习哦!

本系列教程涉及的速查表可以在以下地址下载获取:

  • Pandas速查表
  • Matplotlib速查表
  • Seaborn速查表

拓展参考资料

  • Pandas可视化教程
  • Seaborn官方教程

ShowMeAI相关文章推荐

  • 数据分析介绍
  • 数据分析思维
  • 数据分析的数学基础
  • 业务认知与数据初探
  • 数据清洗与预处理
  • 业务分析与数据挖掘
  • 数据分析工具地图
  • 统计与数据科学计算工具库Numpy介绍
  • Numpy与1维数组操作
  • Numpy与2维数组操作
  • Numpy与高维数组操作
  • 数据分析工具库Pandas介绍
  • 图解Pandas核心操作函数大全
  • 图解Pandas数据变换高级函数
  • Pandas数据分组与操作
  • 数据可视化原则与方法
  • 基于Pandas的数据可视化
  • seaborn工具与数据可视化

ShowMeAI系列教程推荐

  • 图解Python编程:从入门到精通系列教程
  • 图解数据分析:从入门到精通系列教程
  • 图解AI数学基础:从入门到精通系列教程
  • 图解大数据技术:从入门到精通系列教程

图解数据分析 | 数据清洗与预处理_第7张图片

你可能感兴趣的:(图解数据分析,从入门到精通系列,数据分析,数据挖掘)