- AI环境初识
网络飞鸥
AI人工智能
在搭建AI环境时,当前流行的技术涉及多个方面,包括开发框架、深度学习库、硬件支持以及具体的应用技术等。以下是一些主要的技术趋势和流行技术:一、开发框架与深度学习库TensorFlow:由谷歌开发的一个开源机器学习库,广泛用于研究和生产环境。它提供了强大的张量计算能力和灵活的架构,支持广泛的机器学习和深度学习算法。PyTorch:由Facebook推出,也是一个广受欢迎的开源机器学习库。PyTorc
- 覆盖从供应、生产、销售到运营的全过程,引领行业数智化转型新方向的智慧快消开源了
AI服务老曹
开源人工智能自动化音视频能源
智慧快消视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。基于多年的深度学习技术研究和业务应用为基础,集深度学习核心训练和推理框架、基础模型库、端到端开发套件、丰富的工具组件于一体,是中国首个自主研发、功能完备、开源开放的产业级深度学习平台。基
- 金融大模型应用的机遇与挑战
Python程序员罗宾
金融人工智能语言模型数据库自然语言处理
大模型本质特征大模型通常指大语言模型(LargeLanguageModel,LLM),是基于深度学习算法的自然语言处理技术,是通用大模型。大模型也在从单一自然语言处理模态向语音、图像等多模态大模型演进。目前国内外推出了众多的大模型,国内就不下上百款,也因此被称为“百模大战”或“千模大战”。但很多所谓的“大模型”仅是叫“大模型”而已,不管参数量多少,都不能称为真正的大模型。参数量是大模型的一个特征,
- 深度强化学习算法在金融交易决策中的优化应用【附数据】
算法与数据
算法
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 基于深度学习的股票短期趋势预测模型设计与实现【附代码】
算法与数据
深度学习人工智能
,我们首先对股票的基本交易数据进行了清洗和预处理,包括去除异常值、填补缺失值等。同时,我们还挖掘了多个可能影响股票价格走势的因子,如成交量、市盈率、市净率等,并将这些因子作为特征加入到数据集中。通过特征工程,我们进一步扩展了数据集,提高了模型的输入质量。在模型构建方面,我们采用了LSTM网络来处理时间序列数据。LSTM网络具有记忆功能,能够捕捉数据中的长期依赖关系,这对于股票价格走势的预测至关重要
- DeepSeek 与网络安全:AI 在网络安全领域的应用与挑战
一ge科研小菜菜
人工智能运维网络
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言在当今数字化时代,网络安全已成为国家、企业和个人面临的重要挑战。从传统的病毒、木马攻击,到高级持续性威胁(APT)、零日漏洞和供应链攻击,网络威胁的形式日益复杂。与此同时,人工智能(AI)技术的快速发展正在为网络安全提供全新的解决方案,而DeepSeek作为AI领域的新兴力量,也正在探索如何利用深度学习和大规模语言模型(LLM)加强网络安
- 手撸 chatgpt 大模型:单词向量化编码和绝对位置编码算法
coding 迪斯尼
chatgpt算法人工智能大语言模型
在上一节中,我们将每个单词转换为一个表示数字的标记(token)。现在,我们需要将这个数字映射到一个向量上,这个向量称为嵌入(embedding)。在深度学习中,所有无法通过传统数据结构描述的对象都会被用一个向量表示,例如图像、语音、单词、音频等。最初,向量中的各个字段会被初始化为随机数,然后通过大量的数据和深度学习模型来训练这些向量。训练过程逐步改变向量字段的值,从而使这些字段包含某种“知识”。
- 目前(2025年2月)计算机视觉(CV)领域一些表现优异的深度学习模型
空空转念
深度学习系列计算机视觉深度学习人工智能
按任务类型分类介绍:图像分类CoCa:结合对比学习和生成学习,通过对比损失对齐图像和文本嵌入,并使用标题生成损失预测文本标记。它在图像分类、跨模态检索和图像描述等任务中表现出色,且仅需极少的任务特定微调。PaLI:这是一个多模态模型,结合了40亿参数的视觉Transformer(ViT)和多种大型语言模型(LLM),并在包含100多种语言的100亿图像和文本数据集上进行训练。PaLI在图像描述、视
- Python——生成AIGC图像
朱剑君
AIGC人工智能python
文章目录一、背景介绍二、效果图展示三、完整代码四、分步解释五、实用建议1)提示词技巧2)性能优化3)常见问题处理4)扩展功能建议六、注意事项1.硬件要求2.法律合规3.模型安全一、背景介绍AIGC(AI-GeneratedContent),即由人工智能生成的内容,涵盖了文本、图像、音频、视频等各种形式。通过深度学习、生成对抗网络(GAN)和扩散模型等技术,AIGC能够生成高度逼真、具有艺术性的内容
- 图像处理:模拟色差的生成
何以为皇
图像处理人工智能
图像处理:模拟色差的实战案例在做瓷砖瑕疵检测的过程中,需要检测色差。但在实际生产环境中,瓷砖色差检测的数据量较少,无法直接获取足够的数据来训练和优化深度学习模型。于是就考虑通过人为生成色差数据的方式来扩充数据集,进行色差的模拟。1.什么是色差?色差(ColorDifference)是指两种颜色之间的视觉差异。在色彩科学中,CIEDE2000是目前最先进的色差计算方法之一。然而,CIEDE1976也
- python工具——pypinyin 汉字转换拼音
xiaoming0018
pythonpythonlist
把汉字转成拼音后可以进行深度学习分类,做内容识别1.安装pipinstallpypinyin将汉字转换为拼音并生成slug字符串importpypinyinfrompypinyinimportStylecontent=pypinyin.slug('汉语拼音')print(content)#E:\python\>pythonpinyin.py#han-yu-pin-yin修改分隔字符串importp
- 淘系图搜API接入与使用全解析
数据小爬虫.网站开发-Brad
各大电商平台api国际平台API1688python算法前端框架需求分析AI编程
淘系图搜API接入与使用全解析一、接口概述淘系图搜API(即淘宝/天猫以图搜货接口)允许开发者通过上传商品图片,获取淘宝平台上的相似商品列表。其核心技术基于阿里巴巴的深度学习模型,支持服饰、家居、3C等多品类识别,广泛应用于比价、找同款、商品推荐等场景。二、接入准备资质要求:企业开发者需提供营业执照、应用场景说明(如“电商比价工具”)。个人开发者权限受限,建议通过第三方API服务商(如数位、Dat
- 深度学习革命背后:DBN、AlexNet、GAN 等神级架构,究竟藏着怎样的 AI 崛起密码?(附deepseek)
universe_code
人工智能python深度学习经验分享
深度学习革命**3.深度学习革命(2006年至今)****2006年:深度学习奠基——深度信念网络(DBN)****2012年:AlexNet崛起****2014年:架构创新潮****生成对抗网络(GAN)****残差网络(ResNet)****Transformer****总结**补充(deepseek)一、核心技术原理1.**混合专家架构(MoE)**2.**多头潜在注意力(MLA)**3.*
- 整理:4篇论文知识蒸馏引领高效模型新时代
mslion
多模态人工智能知识蒸馏
知识蒸馏(KnowledgeDistillation)是当前机器学习研究中的一个重要方向,特别是在模型压缩和效率优化等任务中。传统的深度学习模型往往依赖于复杂的大型网络,以获取卓越的性能。然而,这些庞大的模型对计算资源和存储空间的需求,使得它们在实际应用中,尤其是在边缘设备或移动端部署中面临巨大挑战。知识蒸馏技术致力于解决这一问题,其核心思想是通过一个“教师模型”向一个更小、更高效的“学生模型”传
- 人工智能:从基础到前沿
顾漂亮
人工智能深度学习windows
目录目录1.引言2.人工智能基础2.1什么是人工智能?2.2人工智能的历史2.3人工智能的分类3.机器学习3.1机器学习概述3.2监督学习3.3无监督学习3.4强化学习4.深度学习4.1深度学习概述4.2神经网络基础4.3卷积神经网络(CNN)4.4循环神经网络(RNN)5.自然语言处理(NLP)5.1NLP概述5.2文本预处理5.3词嵌入5.4语言模型6.计算机视觉6.1计算机视觉概述6.2图像
- 深度学习框架与边缘计算融合驱动医疗金融模型优化新路径
智能计算研究中心
其他
内容概要随着边缘计算与深度学习框架的深度融合,医疗与金融领域的模型优化正在突破传统算力与隐私保护的瓶颈。当前,TensorFlow、PyTorch等主流框架通过轻量化改造(如TensorFlowLite与PyTorchMobile)逐步适应边缘设备的资源限制,同时结合联邦学习技术构建分布式训练网络。这种技术协同不仅降低了医疗影像诊断中的数据传输延迟,还通过动态模型压缩策略(如量化与剪枝)将金融预测
- 人工智能学习框架
静默.\\
人工智能学习
人工智能学习框架概述随着人工智能技术的飞速发展,选择合适的机器学习或深度学习框架对于项目的成功至关重要。这些框架提供了强大的工具和库,使得开发者能够更高效地构建、训练和部署模型。目前市面上有许多流行的AI学习框架,每种框架都有其独特的特点和适用场景。首先,TensorFlow是由Google开发的一个开源机器学习框架,支持从简单的线性回归到复杂的神经网络等多种模型类型。它以其高度灵活性和可扩展性著
- 如何将DeepSeek集成到自己的项目中:从入门到精通
木觞清
人工智能
引言DeepSeek作为一款强大的深度学习平台,正在为开发者提供高效、灵活的AI解决方案。无论你是想构建一个图像分类系统,还是开发一个自然语言处理应用,DeepSeek都能帮助你快速实现目标。本文将详细介绍如何将DeepSeek集成到自己的项目中,并提供丰富的资源和示例代码,帮助你从入门到精通。为什么选择DeepSeek?在开始集成之前,我们先来看看DeepSeek的优势:高效的计算能力:支持GP
- 机器学习和深度学习有什么区别?
facaixxx2024
AI大模型机器学习深度学习人工智能
深度学习和机器学习有什么区别?深度学习是机器学习一个分支,机器学习包含深度学习。下面阿小云从定义、技术、数据需求、应用领域、模型复杂度和计算资源多维度来对比深度学习和机器学习的区别:二者的定义区别机器学习:是一种数据分析技术,通过算法使计算机能够在无明确编程的情况下进行学习和决策。深度学习:是机器学习的一个子领域,使用神经网络模型,尤其是深层神经网络模型,来处理、解释和分类数据。依赖算法和技术不同
- AI趋势下,软件测试工程师怎么拥抱AI
悠然的笔记本
人工智能
在AI趋势下,软件测试工程师怎么拥抱AI呢?以下是我的一些思考:一、掌握AI基础知识软件测试工程师需要学习机器学习、深度学习、自然语言处理等领域的基本原理和算法。这些基础知识有助于理解AI在测试中的应用基础,从而能够更好地利用AI技术提升测试效率和质量。二、掌握AI相关工具和技术编程语言:学习使用Python等编程语言,这是实现AI应用的常用工具之一。框架:掌握TensorFlow、PyTorch
- 深度学习之图像回归(二)
zhengyawen666
深度学习回归数据挖掘人工智能
前言这篇文章主要是在图像回归(一)的基础上对该项目进行的优化。(一)主要是帮助迅速入门理清一个深度学习项目的逻辑这篇文章则主要注重在此基础上对于数据预处理和模型训练进行优化前者会通过涉及PCA主成分分析特征选择后者通过正则化数据预处理数据预处理的原因思路链未经过处理的原始数据存在一些问题->对数据进行处理(涉及多种方法)->提升模型性能数据可能存在的问题冗余信息:数据中可能存在重复的特征或高度相关
- VGG 改进:加入GAMAttention注意力机制提升对全局信息捕捉能力
听风吹等浪起
AI改进系列深度学习cnn神经网络人工智能
目录1.GAMAttention注意力机制2.VGG加入GAMAttention模块3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.GAMAttention注意力机制GAMAttention(GlobalAttentionMechanism)是一种用于增强深度学习模型对全局信息捕捉能力的注意力机制。它通过引入全局上下文信息,帮助模型更好地理解输入数据
- 【深度学习】矩阵的理解与应用
大数据追光猿
深度学习矩阵算法线性代数机器学习python深度学习
一、矩阵基础知识1.什么是矩阵?矩阵是一个数学概念,通常表示为一个二维数组,它由行和列组成,用于存储数值数据。矩阵是线性代数的基本工具之一,广泛应用于数学、物理学、工程学、计算机科学、机器学习和数据分析等领域。1.1矩阵的表示一个矩阵通常用大写字母来表示,例如AAA,而矩阵中的元素则用小写字母来表示,例如aija_{ij}aij,其中iii表示行索引,jjj表示列索引。本质:矩阵是二维的张量矩阵的
- Python中常见库 PyTorch和Pydantic 讲解
爱丫爱
pythonpytorch开发语言
PyTorch简介PyTorch是一个开源的深度学习框架,由Facebook的AI研究团队开发。它提供了丰富的工具和库,用于构建和训练各种深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)及其变体(如LSTM、GRU)、生成对抗网络(GAN)等。核心特性动态计算图:PyTorch采用动态计算图,这意味着在运行时可以动态定义和修改计算图,使得模型的构建和调试更加灵活。这与TensorFl
- 计算机视觉CV学习路线
我喝AD钙
我的学习笔记计算机视觉学习人工智能
计算机视觉CV学习路线1.基础准备(可参考mooc学习)2.计算机视觉基础知识(可参考mooc学习、计算机图形学)3.经典计算机视觉算法(可参考吴恩达机器学习课程、国内外计算机图形学课程)4.深度学习基础(参考吴恩达和TF、Keras官网手册)5.深度学习在计算机视觉中的应用(李飞飞课程、arxiv论文原文和解析博客,实战参考gitee/github)6.现代计算机视觉技术(arxiv论文原文和解
- 【深度学习基础模型】去噪自编码器 (Denoising Autoencoders, DAE)详细理解并附实现代码。
985小水博一枚呀
深度学习学习笔记深度学习人工智能VAEpython学习autoencoder
【深度学习基础模型】ExtractingandComposingRobustFeatureswithDenoisingAutoencoders【深度学习基础模型】ExtractingandComposingRobustFeatureswithDenoisingAutoencoders文章目录【深度学习基础模型】ExtractingandComposingRobustFeatureswithDeno
- 深入探索Mozilla的DeepSpeech:语音识别的新里程碑
温宝沫Morgan
深入探索Mozilla的DeepSpeech:语音识别的新里程碑项目地址:https://gitcode.com/gh_mirrors/de/DeepSpeech项目简介是一个开源的语音识别引擎,基于深度学习技术,致力于提供准确、可扩展且易于集成的解决方案。该项目的目标是打破现有的语音识别壁垒,使开发者能够轻松构建支持语音的应用,推动人机交互进入新的时代。技术分析基于Baidu的DeepSpeec
- 【深度学习】Adam优化器
九筠
机器学习深度学习人工智能
目录1什么是Adam1.1基本概念1.2Adam的数学理解1.2.1计算一阶矩估计(mean)1.2.2计算二阶矩估计(uncenteredvariance)1.2.3矫正一阶矩估计(mean)和二阶矩估计(uncenteredvariance)的偏差1.2.4更新模型参数1.3Adam的简单理解2Adam优化算法怎么用2.1导入所需的库和模块2.2定义模型和损失函数2.3定义优化器2.4在训练循
- 计算机视觉与深度学习实战:以Python为工具,基于帧间差法进行视频目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于帧间差法进行视频目标检测
一、引言随着科技的飞速发展,计算机视觉和深度学习已成为当今科技领域的热门话题。它们不仅在科研领域取得了显著的成果,而且在安防监控、智能交通、医疗影像分析、工业自动化等领域得到了广泛的应用。本文旨在探讨计算机视觉与深度学习的实战应用,特别是以Python为工具,基于帧间差法进行视频目标检测的方法。二、计算机视觉概述计算机视觉是一门研究如何使机器从数字图像或视频中提取、分析和理解有用信息的学科。它涉及
- 基于深度学习的入侵检测系统设计与实现
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于深度学习的入侵检测系统设计与实现关键词:深度学习、入侵检测、网络安全、机器学习、神经网络、特征提取、实时分析文章目录基于深度学习的入侵检测系统设计与实现1.背景介绍1.1网络安全的重要性1.2传统入侵检测系统的局限性1.3深度学习在安全领域的应用前景2.核心概念与联系2.1入侵检测系统(IDS)概述2.2深度学习基础2.3深度学习在入侵检测中的应用3.核心算法原理&具体操作步骤3.1算法原理概
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen