欢迎关注 『OpenCV 例程200篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中
修正阿尔法均值滤波器也属于统计排序滤波器,其思想类似于比赛中去掉最高分和最低分后计算平均分的方法。
令 S x y Sxy Sxy 表示中心在点 ( x , y ) (x,y) (x,y) 、大小为 m ∗ n m*n m∗n 的矩形子窗口(邻域)的一组坐标,修正阿尔法均值滤波器在由 S x y Sxy Sxy 定义的邻域中,删除 d 个最低灰度值和 d 个最高灰度值,计算剩余像素 g R ( r , c ) g_R(r,c) gR(r,c) 的算术平均值作为输出结果,即:
f ^ ( x , y ) = 1 m n − 2 d ∑ ( r , c ) ∈ S R g R ( r , c ) \hat{f}(x,y) = \frac{1}{mn-2d} \sum _{(r,c) \in S_R} g_R(r,c) f^(x,y)=mn−2d1(r,c)∈SR∑gR(r,c)
d 的取值范围是 [ 0 , m n / 2 − 1 ] [0, mn/2-1] [0,mn/2−1]。选择 d 的大小对图像处理的效果影响很大,当 d = 0 d=0 d=0 时简化为算术平均滤波器,当 d = m n / 2 − 1 d=mn/2-1 d=mn/2−1 简化为中值滤波器。d 取其它值时,适合于处理多种混合噪声,如高斯噪声和椒盐噪声。
# 9.13: 修正阿尔法均值滤波器 (Modified alpha-mean filter)
img = cv2.imread("../images/Fig0507b.tif", 0) # flags=0 读取为灰度图像
img_h = img.shape[0]
img_w = img.shape[1]
m, n = 5, 5
kernalMean = np.ones((m, n), np.float32) # 生成盒式核
# 边缘填充
hPad = int((m-1) / 2)
wPad = int((n-1) / 2)
imgPad = np.pad(img.copy(), ((hPad, m-hPad-1), (wPad, n-wPad-1)), mode="edge")
imgAlphaFilter0 = np.zeros(img.shape)
imgAlphaFilter1 = np.zeros(img.shape)
imgAlphaFilter2 = np.zeros(img.shape)
for i in range(img_h):
for j in range(img_w):
# 邻域 m * n
pad = imgPad[i:i+m, j:j+n]
padSort = np.sort(pad.flatten()) # 对邻域像素按灰度值排序
d = 1
sumAlpha = np.sum(padSort[d:m*n-d-1]) # 删除 d 个最大灰度值, d 个最小灰度值
imgAlphaFilter0[i, j] = sumAlpha / (m*n-2*d) # 对剩余像素进行算术平均
d = 2
sumAlpha = np.sum(padSort[d:m*n-d-1])
imgAlphaFilter1[i, j] = sumAlpha / (m*n-2*d)
d = 4
sumAlpha = np.sum(padSort[d:m*n-d-1])
imgAlphaFilter2[i, j] = sumAlpha / (m*n-2*d)
plt.figure(figsize=(9, 7))
plt.subplot(221), plt.axis('off'), plt.title("Original")
plt.imshow(img, cmap='gray', vmin=0, vmax=255)
plt.subplot(222), plt.axis('off'), plt.title("Modified alpha-mean(d=1)")
plt.imshow(imgAlphaFilter0, cmap='gray', vmin=0, vmax=255)
plt.subplot(223), plt.axis('off'), plt.title("Modified alpha-mean(d=2)")
plt.imshow(imgAlphaFilter1, cmap='gray', vmin=0, vmax=255)
plt.subplot(224), plt.axis('off'), plt.title("Modified alpha-mean(d=4)")
plt.imshow(imgAlphaFilter2, cmap='gray', vmin=0, vmax=255)
plt.tight_layout()
plt.show()
(本节完)
版权声明:
youcans@xupt 原创作品,转载必须标注原文链接
Copyright 2021 youcans, XUPT
Crated:2022-2-1
欢迎关注 『OpenCV 例程200篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中
【OpenCV 例程200篇】01. 图像的读取(cv2.imread)
【OpenCV 例程200篇】02. 图像的保存(cv2.imwrite)
【OpenCV 例程200篇】03. 图像的显示(cv2.imshow)
【OpenCV 例程200篇】04. 用 matplotlib 显示图像(plt.imshow)
【OpenCV 例程200篇】05. 图像的属性(np.shape)
【OpenCV 例程200篇】06. 像素的编辑(img.itemset)
【OpenCV 例程200篇】07. 图像的创建(np.zeros)
【OpenCV 例程200篇】08. 图像的复制(np.copy)
【OpenCV 例程200篇】09. 图像的裁剪(cv2.selectROI)
【OpenCV 例程200篇】10. 图像的拼接(np.hstack)
【OpenCV 例程200篇】11. 图像通道的拆分(cv2.split)
【OpenCV 例程200篇】12. 图像通道的合并(cv2.merge)
【OpenCV 例程200篇】13. 图像的加法运算(cv2.add)
【OpenCV 例程200篇】14. 图像与标量相加(cv2.add)
【OpenCV 例程200篇】15. 图像的加权加法(cv2.addWeight)
【OpenCV 例程200篇】16. 不同尺寸的图像加法
【OpenCV 例程200篇】17. 两张图像的渐变切换
【OpenCV 例程200篇】18. 图像的掩模加法
【OpenCV 例程200篇】19. 图像的圆形遮罩
【OpenCV 例程200篇】20. 图像的按位运算
【OpenCV 例程200篇】21. 图像的叠加
【OpenCV 例程200篇】22. 图像添加非中文文字
【OpenCV 例程200篇】23. 图像添加中文文字
【OpenCV 例程200篇】23. 图像添加中文文字
【OpenCV 例程200篇】24. 图像的仿射变换
【OpenCV 例程200篇】25. 图像的平移
【OpenCV 例程200篇】26. 图像的旋转(以原点为中心)
【OpenCV 例程200篇】27. 图像的旋转(以任意点为中心)
【OpenCV 例程200篇】28. 图像的旋转(直角旋转)
【OpenCV 例程200篇】29. 图像的翻转(cv2.flip)
【OpenCV 例程200篇】30. 图像的缩放(cv2.resize)
【OpenCV 例程200篇】31. 图像金字塔(cv2.pyrDown)
【OpenCV 例程200篇】32. 图像的扭变(错切)
【OpenCV 例程200篇】33. 图像的复合变换
【OpenCV 例程200篇】34. 图像的投影变换
【OpenCV 例程200篇】35. 图像的投影变换(边界填充)
【OpenCV 例程200篇】36. 直角坐标与极坐标的转换
【OpenCV 例程200篇】37. 图像的灰度化处理和二值化处理
【OpenCV 例程200篇】38. 图像的反色变换(图像反转)
【OpenCV 例程200篇】39. 图像灰度的线性变换
【OpenCV 例程200篇】40. 图像分段线性灰度变换
【OpenCV 例程200篇】41. 图像的灰度变换(灰度级分层)
【OpenCV 例程200篇】42. 图像的灰度变换(比特平面分层)
【OpenCV 例程200篇】43. 图像的灰度变换(对数变换)
【OpenCV 例程200篇】44. 图像的灰度变换(伽马变换)
【OpenCV 例程200篇】45. 图像的灰度直方图
【OpenCV 例程200篇】46. 直方图均衡化
【OpenCV 例程200篇】47. 图像增强—直方图匹配
【OpenCV 例程200篇】48. 图像增强—彩色直方图匹配
【OpenCV 例程200篇】49. 图像增强—局部直方图处理
【OpenCV 例程200篇】50. 图像增强—直方图统计量图像增强
【OpenCV 例程200篇】51. 图像增强—直方图反向追踪
【OpenCV 例程200篇】52. 图像的相关与卷积运算
【OpenCV 例程200篇】53. Scipy 实现图像二维卷积
【OpenCV 例程200篇】54. OpenCV 实现图像二维卷积
【OpenCV 例程200篇】55. 可分离卷积核
【OpenCV 例程200篇】56. 低通盒式滤波器
【OpenCV 例程200篇】57. 低通高斯滤波器
【OpenCV 例程200篇】58. 非线性滤波—中值滤波
【OpenCV 例程200篇】59. 非线性滤波—双边滤波
【OpenCV 例程200篇】60. 非线性滤波—联合双边滤波
【OpenCV 例程200篇】61. 导向滤波(Guided filter)
【OpenCV 例程200篇】62. 图像锐化——钝化掩蔽
【OpenCV 例程200篇】63. 图像锐化——Laplacian 算子
【OpenCV 例程200篇】64. 图像锐化——Sobel 算子
【OpenCV 例程200篇】65. 图像锐化——Scharr 算子
【OpenCV 例程200篇】66. 图像滤波之低通/高通/带阻/带通
【OpenCV 例程200篇】67. 空间域图像增强的综合应用
【OpenCV 例程200篇】68. 空间域图像增强的综合应用
【OpenCV 例程200篇】69. 连续非周期信号的傅立叶系数
【OpenCV 例程200篇】70. 一维连续函数的傅里叶变换
【OpenCV 例程200篇】71. 连续函数的取样
【OpenCV 例程200篇】72. 一维离散傅里叶变换
【OpenCV 例程200篇】73. 二维连续傅里叶变换
【OpenCV 例程200篇】74. 图像的抗混叠
【OpenCV 例程200篇】75. Numpy 实现图像傅里叶变换
【OpenCV 例程200篇】76. OpenCV 实现图像傅里叶变换
【OpenCV 例程200篇】77. OpenCV 实现快速傅里叶变换
【OpenCV 例程200篇】78. 频率域图像滤波基础
【OpenCV 例程200篇】79. 频率域图像滤波的基本步骤
【OpenCV 例程200篇】80. 频率域图像滤波详细步骤
【OpenCV 例程200篇】81. 频率域高斯低通滤波器
【OpenCV 例程200篇】82. 频率域巴特沃斯低通滤波器
【OpenCV 例程200篇】83. 频率域低通滤波:印刷文本字符修复
【OpenCV 例程200篇】84. 由低通滤波器得到高通滤波器
【OpenCV 例程200篇】85. 频率域高通滤波器的应用
【OpenCV 例程200篇】86. 频率域滤波应用:指纹图像处理
【OpenCV 例程200篇】87. 频率域钝化掩蔽
【OpenCV 例程200篇】88. 频率域拉普拉斯高通滤波
【OpenCV 例程200篇】89. 带阻滤波器的传递函数
【OpenCV 例程200篇】90. 频率域陷波滤波器
【OpenCV 例程200篇】91. 高斯噪声、瑞利噪声、爱尔兰噪声
【OpenCV 例程200篇】92. 指数噪声、均匀噪声、椒盐噪声
【OpenCV 例程200篇】93. 噪声模型的直方图
【OpenCV 例程200篇】94. 算术平均滤波器
【OpenCV 例程200篇】95. 几何均值滤波器
【OpenCV 例程200篇】96. 谐波平均滤波器
【OpenCV 例程200篇】97. 反谐波平均滤波器
【OpenCV 例程200篇】98. 统计排序滤波器
【OpenCV 例程200篇】99. 修正阿尔法均值滤波器
【OpenCV 例程200篇】100. 自适应局部降噪滤波器