OpenCV 手势识别实现物体虚拟拖放

本文主要基于 OpenCV 和 MediaPipe 实现物体的虚拟拖放,最终效果如下:

OpenCV 实现虚拟方块拖放

主要分为下面几个步骤

  1. 利用 opencv 读取摄像头视频
  2. 利用 mediaPipe 获取手掌关键点位置
  3. 定义拖放手势:主要是根据食指和中指的距离远近来决定是否拖放
  4. 更新方块,画出图像位置

手势检测

手势检测我们主要是用 MediaPipe 中的手势检测,其输出为20个关键点的位置坐标(x, y, z),输出关键点信息如下图:

OpenCV 手势识别实现物体虚拟拖放_第1张图片

代码如下:

# handTrackingModule.py

import cv2  
import mediapipe as mp  
import math  
from mediapipe.python.solutions.drawing_utils import DrawingSpec  
  
  
class HandDetector:  
    def __init__(self, static_image_mode=False, maxHands=2, detectionCon=0.5, minTrackCon=0.5):  
        """  
 :param static_image_mode: 静态模式检测会慢一些  
 :param maxHands: 最大手检测数量  
 :param detectionCon: 最小检测阈值  
 :param minTrackCon: 最小跟踪阈值  
 """ self.static_image_mode = static_image_mode  
        self.maxHands = maxHands  
        self.detectionCon = detectionCon  
        self.minTrackCon = minTrackCon  
  
        self.mpHands = mp.solutions.hands  
  
        self.hands = self.mpHands.Hands(static_image_mode=self.static_image_mode, max_num_hands=self.maxHands,  
 min_detection_confidence=self.detectionCon,  
 min_tracking_confidence=self.minTrackCon)  
  
        self.mpDraw = mp.solutions.drawing_utils  
        self.tipIds = [4, 8, 12, 16, 20]  # 指尖关键点, 分别是大拇指到小指  
 self.fingers = []  
        self.lmList = []  
        self.results = None  
  
 def findHands(self, img, draw=True, flip_type=False):  
        """  
 手部检测  
 """ img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  
        self.results = self.hands.process(img_rgb)  
        all_hands = []  
        h, w, c = img.shape  
        if self.results.multi_hand_landmarks:  
            for handType, handLms in zip(self.results.multi_handedness, self.results.multi_hand_landmarks):  
                my_hand = {}  
                mylmList = []  
                xList = []  
                yList = []  
                #获取关键点坐标  
 for id, lm in enumerate(handLms.landmark):  
                    px, py, pz = int(lm.x * w), int(lm.y * h), int(lm.z * w)  
                    mylmList.append([px, py, pz])  
                    xList.append(px)  
                    yList.append(py)  
  
                ## 获取手部矩形框  
 xmin, xmax = min(xList), max(xList)  
                ymin, ymax = min(yList), max(yList)  
                boxW, boxH = xmax - xmin, ymax - ymin  
                bbox = xmin, ymin, boxW, boxH  
                cx, cy = bbox[0] + (bbox[2] // 2), \  
                         bbox[1] + (bbox[3] // 2)  
  
                my_hand["lmList"] = mylmList  
                my_hand["bbox"] = bbox  
                my_hand["center"] = (cx, cy)  
  
                # 判断左右手  
 if flip_type:  
                    if handType.classification[0].label == "Right":  
                        my_hand["type"] = "Left"  
 else:  
                        my_hand["type"] = "Right"  
 else:  
                    my_hand["type"] = handType.classification[0].label  
                all_hands.append(my_hand)  
  
                if draw:  
                    self.mpDraw.draw_landmarks(img, handLms,  
 self.mpHands.HAND_CONNECTIONS,  
 connection_drawing_spec=DrawingSpec(color=(255, 255, 0)))  
  
                    cv2.rectangle(img, (bbox[0] - 20, bbox[1] - 20),  
 (bbox[0] + bbox[2] + 20, bbox[1] + bbox[3] + 20),  
 (255, 0, 255), 2)  
                    cv2.putText(img, my_hand["type"], (bbox[0] - 30, bbox[1] - 30), cv2.FONT_HERSHEY_PLAIN,  
 2, (255, 0, 255), 2)  
  
        if draw:  
            return all_hands, img  
        else:  
            return all_hands, None  
  
 def findDistance(self, p1, p2, img=None):  
        """  
 求两个关键点的距离  
 """  
 x1, y1 = p1[0], p1[1]  
        x2, y2 = p2[0], p2[1]  
        cx, cy = (x1 + x2) // 2, (y1 + y2) // 2  
 length = math.hypot(x2 - x1, y2 - y1)  
        info = (x1, y1, x2, y2, cx, cy)  
        if img is not None:  
            cv2.circle(img, (x1, y1), 15, (255, 0, 255), cv2.FILLED)  
            cv2.circle(img, (x2, y2), 15, (255, 0, 255), cv2.FILLED)  
            cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), 3)  
            cv2.circle(img, (cx, cy), 15, (255, 0, 255), cv2.FILLED)  
            return length, info, img  
        else:  
            return length, info, None  

实现方块拖放

import cv2  
from handTrackingModule import HandDetector  
import numpy as np  
import time  
  
# 打开摄像头  
cap = cv2.VideoCapture(2)  
cap.set(3, 1280)  
cap.set(4, 720)  
  
colorR = (255, 0, 255)  
colorB = (255, 0, 0)  
  
detector = HandDetector(detectionCon=0.8)  
  
# 定义方块类  
class DragRect():  
    def __init__(self, posCenter, size=[150, 150]):  
        self.posCenter = posCenter  
        self.size = size  
        self.color = colorR  
  
    def update(self, cursor, hit1 = True):  
        cx, cy = self.posCenter[0], self.posCenter[1]  
        w, h = self.size  
  
        # 如果关键点在方块内部,锁定方块  
 if cx - w // 2 < cursor[0] < cx + w // 2 and cy - h // 2 < cursor[1] < cy + h // 2:  
            self.posCenter = cursor  
            self.color = colorB  
        else:  
            self.color = colorR  
  
  
# 画出方块  
rectList = []  
for x in range(5):  
    rectList.append(DragRect([x * 250 + 150, 150]))  
  
prev_time = time.time()  
while True:  
    success, img = cap.read()  
    img = cv2.flip(img, 1)  
    lmList, img = detector.findHands(img)  
  
    # 检测是否有手  
 nums = len(lmList)  
    if nums > 0:  
        lmList_1 = lmList[0]['lmList']  
  
        # 食指和中指的距离  
 dist, _, _ = detector.findDistance(lmList_1[8], lmList_1[12], img)  
        if dist < 50:  
            for rect in rectList:  
                rect.update(lmList_1[8])  
        else:  
            for rect in rectList:  
                rect.color = colorR  
  
    imgNew = np.zeros_like(img, np.uint8)  
    for rect in rectList:  
        cx, cy = rect.posCenter[0], rect.posCenter[1]  
        w, h = rect.size  
        color = rect.color  
        cv2.rectangle(imgNew, (cx - w // 2, cy - h // 2),  
 (cx + w // 2, cy + h // 2), color, cv2.FILLED)  
  
    out = img.copy()  
    alpha = 0.08  
 mask = imgNew.astype(bool)  
    out[mask] = cv2.addWeighted(img, alpha, imgNew, 1 - alpha, 0)[mask]  
  
    current_time = time.time()  
    fps = 1 / (current_time - prev_time)  
    prev_time = current_time  
    cv2.putText(out, f'FPS: {int(fps)}', (20, 70), cv2.FONT_HERSHEY_PLAIN,  
 3, (0, 255, 0), 3)  
    cv2.imshow("hand detect", out)  
    cv2.waitKey(1)

你可能感兴趣的:(opencv,计算机视觉,人工智能,opencv,计算机视觉,深度学习)