ElasticSearch(二)检索的进阶

ElasticSearch(二)检索的进阶

检索的进阶

SearchAPI

ES支持两种基本方式的检索:

https://www.elastic.co/guide/en/elasticsearch/reference/7.13/getting-started.html

  • 一个是通过使用REST request API 发送搜索参数(URL+检索参数)
GET /bank/_search?q=*&sort=account_number:asc
{
  "took" : 21,
  "timed_out" : false,
  "_shards" : { //集群
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {  //命中的记录
    "total" : {
      "value" : 1000, //记录的条数 虽然是1000条 但只是返回10条
      "relation" : "eq"
    },
    "max_score" : null,//模糊搜素的相关匹配程度
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "0",
        "_score" : null,
        "_source" : {
          "account_number" : 0,
          "balance" : 16623,
          "firstname" : "Bradshaw",
          "lastname" : "Mckenzie",
          "age" : 29,
          "gender" : "F",
          "address" : "244 Columbus Place",
          "employer" : "Euron",
          "email" : "[email protected]",
          "city" : "Hobucken",
          "state" : "CO"
        },
        "sort" : [
          0
        ]
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "1",
        "_score" : null,
        "_source" : {
          "account_number" : 1,
          "balance" : 39225,
          "firstname" : "Amber",
          "lastname" : "Duke",
          "age" : 32,
          "gender" : "M",
          "address" : "880 Holmes Lane",
          "employer" : "Pyrami",
          "email" : "[email protected]",
          "city" : "Brogan",
          "state" : "IL"
        },
        "sort" : [
          1
        ]
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "2",
        "_score" : null,
        "_source" : {
          "account_number" : 2,
          "balance" : 28838,
          "firstname" : "Roberta",
          "lastname" : "Bender",
          "age" : 22,
          "gender" : "F",
          "address" : "560 Kingsway Place",
          "employer" : "Chillium",
          "email" : "[email protected]",
          "city" : "Bennett",
          "state" : "LA"
        },
        "sort" : [
          2
        ]
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "3",
        "_score" : null,
        "_source" : {
          "account_number" : 3,
          "balance" : 44947,
          "firstname" : "Levine",
          "lastname" : "Burks",
          "age" : 26,
          "gender" : "F",
          "address" : "328 Wilson Avenue",
          "employer" : "Amtap",
          "email" : "[email protected]",
          "city" : "Cochranville",
          "state" : "HI"
        },
        "sort" : [
          3
        ]
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "4",
        "_score" : null,
        "_source" : {
          "account_number" : 4,
          "balance" : 27658,
          "firstname" : "Rodriquez",
          "lastname" : "Flores",
          "age" : 31,
          "gender" : "F",
          "address" : "986 Wyckoff Avenue",
          "employer" : "Tourmania",
          "email" : "[email protected]",
          "city" : "Eastvale",
          "state" : "HI"
        },
        "sort" : [
          4
        ]
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "5",
        "_score" : null,
        "_source" : {
          "account_number" : 5,
          "balance" : 29342,
          "firstname" : "Leola",
          "lastname" : "Stewart",
          "age" : 30,
          "gender" : "F",
          "address" : "311 Elm Place",
          "employer" : "Diginetic",
          "email" : "[email protected]",
          "city" : "Fairview",
          "state" : "NJ"
        },
        "sort" : [
          5
        ]
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "6",
        "_score" : null,
        "_source" : {
          "account_number" : 6,
          "balance" : 5686,
          "firstname" : "Hattie",
          "lastname" : "Bond",
          "age" : 36,
          "gender" : "M",
          "address" : "671 Bristol Street",
          "employer" : "Netagy",
          "email" : "[email protected]",
          "city" : "Dante",
          "state" : "TN"
        },
        "sort" : [
          6
        ]
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "7",
        "_score" : null,
        "_source" : {
          "account_number" : 7,
          "balance" : 39121,
          "firstname" : "Levy",
          "lastname" : "Richard",
          "age" : 22,
          "gender" : "M",
          "address" : "820 Logan Street",
          "employer" : "Teraprene",
          "email" : "[email protected]",
          "city" : "Shrewsbury",
          "state" : "MO"
        },
        "sort" : [
          7
        ]
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "8",
        "_score" : null,
        "_source" : {
          "account_number" : 8,
          "balance" : 48868,
          "firstname" : "Jan",
          "lastname" : "Burns",
          "age" : 35,
          "gender" : "M",
          "address" : "699 Visitation Place",
          "employer" : "Glasstep",
          "email" : "[email protected]",
          "city" : "Wakulla",
          "state" : "AZ"
        },
        "sort" : [
          8
        ]
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "9",
        "_score" : null,
        "_source" : {
          "account_number" : 9,
          "balance" : 24776,
          "firstname" : "Opal",
          "lastname" : "Meadows",
          "age" : 39,
          "gender" : "M",
          "address" : "963 Neptune Avenue",
          "employer" : "Cedward",
          "email" : "[email protected]",
          "city" : "Olney",
          "state" : "OH"
        },
        "sort" : [
          9
        ]
      }
    ]
  }
}
  • 另一个是通过使用 REST request body 来发送他们(URL+请求体)
GET /bank/_search

{
  "query": {"match_all": {}},
  "sort": [
    {
      "account_number": {
        "order": "asc"
      }
    }
  ]
}

ElasticSearch(二)检索的进阶_第1张图片

第二种方式也是用的最多的。

Query DSL

https://www.elastic.co/guide/en/elasticsearch/reference/7.13/query-dsl.html

ElasticSearch(二)检索的进阶_第2张图片

ElasticSearch(二)检索的进阶_第3张图片

Domain Specific Language 领域特定语言。

一个查询语句的典型结构。

{
  "query_name":{
    "argument":{values},
    ....
  }
}

argument

ElasticSearch(二)检索的进阶_第4张图片

argument

ElasticSearch(二)检索的进阶_第5张图片
GET /bank/_search
{
  "query": {
    //匹配规则
    "match_all": {}
  }
  //排序
  , "sort": [
    {
      "balance": {
        "order": "desc"
      }
    }
  ],
  //类似分页查询
  "from": 0,
  "size": 1,
  //返回指定的列
  "_source": ["age","gender"]
}

match

//精确查询
GET /bank/_search
{
  "query": {
    "match": {
      "age": "36"
    }
  }
}
//模糊查询
GET /bank/_search
{
  "query": {
    "match": {
      "address": "Avenue"
    }
  }
}

match_phrase「短语匹配」

将需要匹配的值当成一个整体单词(不分词)进行检索

GET /bank/_search
{
  "query": {
    "match_phrase": {
      "address": "671 Bristol"
    }
  }
}

multi_match「多字段匹配」

GET /bank/_search
{
  "query": {
    "multi_match": {
      "query": "mill",
      "fields": ["state","address"]
    }
  }
}
state或者address 含有mill

bool复合查询

bool是用来做复合查询。复合语句 可以 合并任何其他查询语句,包括复合语句,了解这一点是很重要的。这就意味着,复合语句可以相互嵌套,可以表达非常复杂的逻辑。

GET /bank/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {
          "address": "mill"
        }},
        {"match": {
          "gender": "M"
        }}
      ]
      , "must_not": [
        {"match": {
          "state": "MT"
        }},
        {"match": {
          "age": "28"
        }}
      ],
      "should": [
        {"match": {
          "employer": "Baluba"
        }}
      ]
    }
  }
}

filter过滤

并不是所有的查询都需要产生分数,特别是那些仅用于filtering(过滤)的文档。为了不计算分数ElasticSearch会自动检查场景并且优化查询的执行。

GET /bank/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {
          "address": "mill"
        }}
      ],
      "filter": [
        {"range": {
          "balance": {
            "gte": 10000,
            "lte": 20000
          }
        }}
      ]
    }
  }
}

term

和match一样,匹配某个属性的值。全文检索字段用match(分词匹配),其他非text字段匹配用term。(精确匹配)

GET /bank/_search
{
  "query": {
    "term": {
      "account_number": {
        "value": "970"
      }
    }
  }
}

分析

aggregations(执行集合)

聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于SQL Group by 和SQL聚合函数。在Elasticsearch中,您有执行搜索返回this(命中结果),并且同时返回聚合结果,把一个响应中的所有hits(命中的结果)分隔开的能力。这是非常强大的且有效的,您可以执行查询和多个聚合,并且在一次使用中得到各自的(任何一个的)返回结果,使用一次简洁和简化的API来避免网络往返。

案例:搜索address中包含mill的所有人的年龄分布以及平均年龄,但不显示这些人的详情

GET /bank/_search
{
  "query": {
    "match": {
      "address": "mill"
    }
  },
  "aggs": {
    //年龄分布
    "ageAgg": {
      "terms": {
        "field": "age",
        "size": 10
      }
      },
    //求平均年龄
    "ageAvg":{
      "avg": {
        "field": "age"
      }
   }
   }
 }

结果:

{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 4,
      "relation" : "eq"
    },
    "max_score" : 5.4032025,
    "hits" : [ //匹配后的结果
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "970",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "[email protected]",
          "city" : "Lopezo",
          "state" : "AK"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "136",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 136,
          "balance" : 45801,
          "firstname" : "Winnie",
          "lastname" : "Holland",
          "age" : 38,
          "gender" : "M",
          "address" : "198 Mill Lane",
          "employer" : "Neteria",
          "email" : "[email protected]",
          "city" : "Urie",
          "state" : "IL"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "345",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 345,
          "balance" : 9812,
          "firstname" : "Parker",
          "lastname" : "Hines",
          "age" : 38,
          "gender" : "M",
          "address" : "715 Mill Avenue",
          "employer" : "Baluba",
          "email" : "[email protected]",
          "city" : "Blackgum",
          "state" : "KY"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "472",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 472,
          "balance" : 25571,
          "firstname" : "Lee",
          "lastname" : "Long",
          "age" : 32,
          "gender" : "F",
          "address" : "288 Mill Street",
          "employer" : "Comverges",
          "email" : "[email protected]",
          "city" : "Movico",
          "state" : "MT"
        }
      }
    ]
  },
  "aggregations" : {   //对聚合结果进行分析
    "ageAgg" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [ //桶
        {
          "key" : 38,
          "doc_count" : 2
        },
        {
          "key" : 28,
          "doc_count" : 1
        },
        {
          "key" : 32,
          "doc_count" : 1
        }
      ]
    },
    "ageAvg" : {
      "value" : 34.0
    }
  }
}

案例:按照年龄聚合,并且请求这些年龄段的人的平均薪资

GET /bank/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "Agg": {
      "terms": {
        "field": "age",
        "size": 100
      },
      "aggs": {
        "balanceAvg": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  }
}

案例:查出所有年龄分布,并且这些年龄段中M的平均薪资和F的平均薪资以及这个年龄段的总体平均薪资

GET /bank/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "Agg": {
      "terms": {
        "field": "age",
        "size": 10
      },
      "aggs": {
        "genderNAME": {
          "terms": {
            "field": "gender.keyword",
            "size": 10
          },
          "aggs": {
            "banAvg": {
              "avg": {
                "field": "balance"
              }
            }
          }
        },
        "totalAvg":{
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  }
}

Mapping

就类似我们在操作数据库的时候,给每个数据字段的数据类型,Varchar等等。

这里是es中的所有数据类型:https://www.elastic.co/guide/en/elasticsearch/reference/7.13/mapping-types.html

映射

Mapping(映射)Mapping是用来定义一个文档(document),以及它所包含的属性(field)是如何存储和索引的。

比如,mapping来定义:

  • 那些字符串属性应该被看作全文本属性(full text fields)
  • 那些属性包含数字、日期或者地理位置
  • 文档中的所有属性是否能够被索引(_all配置)
  • 日期的格式
  • 自定义映射规则来执行动态添加属性
  • 查看mapping信息
GET /bank/_mapping

ElasticSearch(二)检索的进阶_第6张图片

  • 修改mapping信息
ElasticSearch(二)检索的进阶_第7张图片

https://www.elastic.co/guide/en/elasticsearch/reference/7.13/explicit-mapping.html

ElasticSearch(二)检索的进阶_第8张图片

那为什么要移除type呢?

关系型数据库中两个数据表示是独立的,即使他们里面有相同名称的列也不影响使用,但ES 中不是这样的。

elasticsearch是基于Lucene开发的搜索引擎,而ES中不同type下名称相同 的filed最终在Lucene中的处理方式是一样的。 两个不同type下的两个user_name,在ES同一个索引下其实被认为是同一个filed,你必 须在两个不同的type中定义相同的filed映射。否则,不同type中的相同字段名称就会在 处理中出现冲突的情况,导致Lucene处理效率下降。

去掉type就是为了提高ES处理数据的效率。

Elasticsearch 7.x

URL中的type参数为可选。比如,索引一个文档不再要求提供文档类型。

Elasticsearch 8.x

不再支持URL中的type参数。

解决:将索引从多类型迁移到单类型,每种类型文档一个独立索引

修改映射

ElasticSearch(二)检索的进阶_第9张图片

**数据迁移:**https://www.elastic.co/guide/en/elasticsearch/reference/7.13/docs-reindex.html

ElasticSearch(二)检索的进阶_第10张图片

POST _reindex
{
  "source": {
    "index": "my-index-000001"
  },
  "dest": {
    "index": "my-new-index-000001"
  }
}

分词

分词器:https://www.elastic.co/guide/en/elasticsearch/reference/7.13/analysis-tokenizers.html

默认的分词器:https://www.elastic.co/guide/en/elasticsearch/reference/7.13/analysis-standard-tokenizer.html

一个tokenizer(分词器)接受一个字符串,将之分割为独立的tokens(词元,通常是独立的单词),然后输出tokens流。

例如,whitespace tokenizer遇到空白字符时分割文本。它会将文本Quick brown fox!分割为「Quick,brown,fox」

该tokenizer(分词器)还负责记录各个term(词条)的顺序或position位置(用于phrase短语和word proximity词近邻查询),以及term(词条)所代表的原始word(单词)的start(起始)和 end(结束)character offsers(字符偏移量)(用于高亮显示搜索的内容)。

POST _analyze
{
  "tokenizer": "standard",
  "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}

Elasticsearch提供了很多内置分词器,可以构建自定义的Custom analyzers(自定义分词器)。

安装IK分词器

因为官方的分词器对中文的分词,不是很友好,所以我们需要针对中文的分词安装中文的分词器。

IK分词器:https://github.com/medcl/elasticsearch-analysis-ik

需要注意的是要兼容自己的版本,对应下载。

安装步骤,首先需要进入es的plugins文件夹,但是我们的es是用docker安装的。所以需要我们执行exec命令。

docker exec -it es容器ID /bin/bash
wget https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.17.3/elasticsearch-analysis-ik-7.17.3.zip

image-20220504083053505

image-20220504083124000

当然,我们在安装的初始已经对es的文件夹进行了挂载,docker外面就有我们的文件夹目录。

cd /mydata/elasticsearch/

ElasticSearch(二)检索的进阶_第11张图片

解压完成之后,需要重启es服务。

docker restart elasticsearch

初使用。

ik_smart

POST _analyze
{
  "tokenizer": "ik_smart", //智能分词器
  "text": "今天天气真好,早上还喝了咖啡"
}
{
  "tokens" : [
    {
      "token" : "今天天气",
      "start_offset" : 0,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "真好",
      "start_offset" : 4,
      "end_offset" : 6,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "早上",
      "start_offset" : 7,
      "end_offset" : 9,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "还",
      "start_offset" : 9,
      "end_offset" : 10,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "喝了",
      "start_offset" : 10,
      "end_offset" : 12,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "咖啡",
      "start_offset" : 12,
      "end_offset" : 14,
      "type" : "CN_WORD",
      "position" : 5
    }
  ]
}

ik_max_word

POST _analyze
{
  "tokenizer": "ik_max_word", //最大单词分组
  "text":"我是中国人"
}
{
  "tokens" : [
    {
      "token" : "我",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "CN_CHAR",
      "position" : 0
    },
    {
      "token" : "是",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "中国人",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "中国",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "国人",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 4
    }
  ]
}

自定义的分词器

由于我们前期给es的最大内存有点小。所以需要重新给内存。我们可以通过重新创建es的实例,由于之前在安装的时候,我们将es的文件都挂载在我们的docker外面,所以就算重新创建实例,数据和配置不会丢失。

#先停掉服务
docker stop es容器的id 
#在移除实例
docker rm es容器的id

# 重新给最大内存
docker run --name elasticsearch -p 9200:9200 -p 9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms64m -Xmx512m" \
-v /mydata/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \
-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.17.3

我们在来安装Nginx,使用Nginx是为了我们在自定义分词器的时候,需要数据。此时,es就可以通过Nginx来向我们要我们自定义分词的数据。

当然安装Nginx,我们也是通过docker安装。

可以参考:Nginx - Official Image | Docker Hub

# 随便启动一个nginx的实例,只是为了复制出配置
docker run -p 80:80 --name nginx -d nginx
#将容器内的配置文件拷贝到当前目录
docker container cp nginx:/etc/nginx .

ElasticSearch(二)检索的进阶_第12张图片

docker stop nginx	
docker rm nginx

ElasticSearch(二)检索的进阶_第13张图片

然后我们执行新的nginx容器。

docker run -p 80:80 --name nginx \
-v /mydata/nginx/html:/usr/share/nginx/html \
-v /mydata/nginx/logs:/var/log/nginx \
-v /mydata/nginx/conf:/etc/nginx \
-d nginx
# /mydata/nginx/html:/usr/share/nginx/html \
# 是将nginx的html映射到我自己的/mydata/nginx/html
#-d nginx 失去找nginx镜像

然后我们在Nginx的html的文件夹下创建index.html

ElasticSearch(二)检索的进阶_第14张图片

ElasticSearch(二)检索的进阶_第15张图片

现在我有自己的词库,只需要告诉ES中的IK分词器去哪里找就行。

进入到ik的目录下。

ElasticSearch(二)检索的进阶_第16张图片

image-20220504103148521

哈哈哈哈国人开发的东西就是好!!!!

ElasticSearch(二)检索的进阶_第17张图片

ElasticSearch(二)检索的进阶_第18张图片

之后需要重启ES服务,基操。

哈哈哈之后报错了。

ElasticSearch(二)检索的进阶_第19张图片

​ 我给它换行了,我有很严重的强迫症哈哈哈哈。改了就好了。

自测一下

POST _analyze
{
  "tokenizer": "ik_max_word",
  "text":"uin今天在学雷丰阳老师的课然后有写博客博客的账户名叫BearBrick0"
}
{
  "tokens" : [
    {
      "token" : "uin",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "今天在",
      "start_offset" : 3,
      "end_offset" : 6,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "今天",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "在学",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "雷丰阳",
      "start_offset" : 7,
      "end_offset" : 10,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "老师",
      "start_offset" : 10,
      "end_offset" : 12,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "的",
      "start_offset" : 12,
      "end_offset" : 13,
      "type" : "CN_CHAR",
      "position" : 6
    },
    {
      "token" : "课",
      "start_offset" : 13,
      "end_offset" : 14,
      "type" : "CN_CHAR",
      "position" : 7
    },
    {
      "token" : "然后",
      "start_offset" : 14,
      "end_offset" : 16,
      "type" : "CN_WORD",
      "position" : 8
    },
    {
      "token" : "后有",
      "start_offset" : 15,
      "end_offset" : 17,
      "type" : "CN_WORD",
      "position" : 9
    },
    {
      "token" : "写",
      "start_offset" : 17,
      "end_offset" : 18,
      "type" : "CN_CHAR",
      "position" : 10
    },
    {
      "token" : "博客",
      "start_offset" : 18,
      "end_offset" : 20,
      "type" : "CN_WORD",
      "position" : 11
    },
    {
      "token" : "博客",
      "start_offset" : 20,
      "end_offset" : 22,
      "type" : "CN_WORD",
      "position" : 12
    },
    {
      "token" : "的",
      "start_offset" : 22,
      "end_offset" : 23,
      "type" : "CN_CHAR",
      "position" : 13
    },
    {
      "token" : "账户",
      "start_offset" : 23,
      "end_offset" : 25,
      "type" : "CN_WORD",
      "position" : 14
    },
    {
      "token" : "户名",
      "start_offset" : 24,
      "end_offset" : 26,
      "type" : "CN_WORD",
      "position" : 15
    },
    {
      "token" : "名叫",
      "start_offset" : 25,
      "end_offset" : 27,
      "type" : "CN_WORD",
      "position" : 16
    },
    {
      "token" : "bearbrick0",
      "start_offset" : 27,
      "end_offset" : 37,
      "type" : "LETTER",
      "position" : 17
    },
    {
      "token" : "bearbrick",
      "start_offset" : 27,
      "end_offset" : 36,
      "type" : "ENGLISH",
      "position" : 18
    },
    {
      "token" : "0",
      "start_offset" : 36,
      "end_offset" : 37,
      "type" : "ARABIC",
      "position" : 19
    }
  ]
}

如果后期还需要自定义分词的词库,直接改nginx目录下的es中的customTokens就OK了。

你可能感兴趣的:(Elasticsearch,elasticsearch,全文检索,搜索引擎)