Levers are simple too, but they can move the world1.
【NIN】《Network In Network》(arXiv-2013)
【Highway network】《Training Very Deep Networks》(NIPS-2015)
【Inception-v1】《Going Deeper with Convolutions》(CVPR-2015)
【Inception-v2】《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》(ICML-2015)
【Inception-v3】《Rethinking the Inception Architecture for Computer Vision》(CVPR-2016)
【WRNs】《Wide Residual Networks》(arXiv-2016)
【RSCM】《RSCM:Region selection and concurrency model for multi-class weather recognition》(TIP-2017)
【Inception-v4、Inception-Resnet-v1、v2】《Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning》(AAAI-2017)
【DenseNet】《Densely Connected Convolutional Networks》(CVPR-2017)
【Xception】《Xception: Deep Learning with Depthwise Separable Convolutions》(CVPR-2017)
【ResNext】《Aggregated Residual Transformations for Deep Neural Networks》(CVPR-2017)
【NasNet】《Learning Transferable Architectures for Scalable Image Recognition》(CVPR-2018)
【SENet】《Squeeze-and-Excitation Networks》(CVPR-2018)
【CBAM】《CBAM: Convolutional Block Attention Module》(ECCV-2018)
【Bilinear Pooling】《A Novel DR Classfication Scheme based on Compact Bilinear Pooling CNN and GBDT》(JIH-MSP-2018)
【FD-MobileNet】《FD-MobileNet:Improved MobileNet with a Fast Downsampling Strategy》(ICIP-2018)
【SKNet】《Selective Kernel Networks》(CVPR-2019)
【BoT】《Bag of Tricks for Image Classification with Convolutional Neural Networks》(CVPR-2019)
【EfficientNet】《EfficientNet:Rethinking Model Scaling for Convolutional Neural Networks》(ICML-2019)
【Distilling】《Distilling the Knowledge in a Neural Network》(arXiv-2015, In NIPS Deep Learning Workshop, 2014)
【Comprssion】《Deep Compression:Compressing Deep Neural Networks with Pruning,Trained Quantization and Huffman Coding》(ICLR-2016 Best Paper)
【Distilling】《Learning Efficient Object Detection Models with Knowledge Distillation》(NIPS-2017)
【Mimic】《Mimicking Very Efficient Network for Object Detection》(CVPR-2017)
【Very Tiny】《Quantization Mimic: Towards Very Tiny CNN for Object Detection》(ECCV-2018)
【MobileNet】《MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications》(CVPR-2017)
【SqueezeNet】《SqueezeNet:AlexNet-Level accuracy with 50× fewer parameters and <0.5MB model size》(ICLR-2017)
【ShuffleNet】《ShuffleNet:An Extremely Efficient Convolutional Neural Network for Mobile Devices》(CVPR-2018)
【MobileNet V2】《MobileNetV2:Inverted Residuals and Linear Bottlenecks》(CVPR-2018)
【ShuffleNet V2】《ShuffleNet V2:Practical Guidelines for Efficient CNN Architecture Design》(ECCV-2018)
【MnasNet】《MnasNet:Platform-Aware Neural Architecture Search for Mobile》(CVPR-2019)
【MobileNet V3】《Searching for MobileNetV3》(ICCV-2019)
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》(ICLR-2014)
【RCNN】《Rich feature hierarchies for accurate object detection and semantic segmentation 》(CVPR-2014)
【SPP-net】《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》(ECCV-2014)
【Fast RCNN】《Fast-RCNN》(ICCV-2015)
【Faster RCNN】《Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks》(NIPS-2015)
【MS-FRCNN】《Multiple Scale Faster-RCNN Approach to Driver’s Cell-phone Usage and Hands on Steering Wheel Detection》(CVPR-2016)
【OHEM】《Training Region-based Object Detectors with Online Hard Example Mining》(CVPR-2016)
【SSD】《SSD:Single Shot MultiBox Detector》(ECCV-2016)
【YOLOv1】《You Only Look Once: Unified, Real-Time Object Detection》 (CVPR-2016)
【R-FCN】《R-FCN: Object Detection via Region-based Fully Convolutional Networks》(NIPS-2016)
【PVANet】《PVANET:Deep but Lightweight Neural Networks for Real-time Object Detection》(arXiv-2016)
【Light-Head RCNN】《Light-Head R-CNN: In Defense of Two-Stage Object Detector》(arXiv-2017)
【FPN】《Feature Pyramid Networks for Object Detection》(CVPR-2017)
【YOLOv2】《YOLO9000:Better, Faster, Stronger》(CVPR-2017)
【Mask RCNN】《Mask R-CNN》(ICCV-2017)
【Focal Loss】《Focal Loss for Dense Object Detection》(ICCV-2017)
【DetNet】《DetNet:A Backbone network for Object Detection》(arXiv-2018)
【YOLOv3】《YOLOv3:An Incremental Improvement》(arXiv-2018)
【USE】《An End-to-End System for Automatic Urinary Particle Recognition
with Convolutional Neural Network》(JMOS-2018)
【USE】《Object detection based on deep learning for urine sediment examination》(Biocybernetics & Biomedical Engineering, 2018)
【R-FCN-3000】《R-FCN-3000 at 30fps: Decoupling Detection and Classification》(CVPR-2018)
【Cascade R-CNN】《Cascade R-CNN: Delving into High Quality Object Detection》(CVPR-2018)
【NL】《Non-local Neural Networks》(CVPR-2018)
【CornerNet】《CornerNet: Detecting Objects as Paired Keypoints》(ECCV-2018)
【Feature Pyramid】《Deep Feature Pyramid Reconfiguration for Object Detection》(ECCV-2018)
【CenterNet】《Objects as Points》(arXiv-2019)
【MoCo】《Momentum Contrast for Unsupervised Visual Representation Learning》(arXiv-2019)
【TridentNet】《Scale-Aware Trident Networks for Object Detection》(ICCV-2019)
【Up-Sampling】《CARAFE:Content-Aware ReAssembly of FEatures》(ICCV-2019)
【ThunderNet】《ThunderNet: Towards Real-time Generic Object Detection on Mobile Devices》(ICCV-2019)
【Matrix Nets】《Matrix Nets:A New Deep Architecture for Object Detection》(ICCV-2019 workshops)
【Libra R-CNN】《Libra R-CNN: Towards Balanced Learning for Object Detection》(CVPR-2019)
【GIoU】《Generalized Intersection over Union:A Metric and A Loss for Bounding Box Regression》(CVPR-2019)
【DIoU】《Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression》(AAAI-2020)
【D2Det】《 D2Det:Towards High Quality Object Detection and Instance Segmentation》(CVPR-2020)
【Sparse R-CNN】《Sparse R-CNN:End-to-End Object Detection with Learnable Proposals》(arXiv-2020)
【YOLOv4】《YOLOv4:Optimal Speed and Accuracy of Object Detection》(arXiv-2020)
【U-Net】《U-Net:Convolutional Networks for Biomedical Image Segmentation》(MICCAI-2015)
【FCN】《Fully Convolutional Networks for Semantic Segmentation》(CVPR-215 best paper)
【Dilated Conv】《Multi-Scale Context Aggregation by Dilated Convolutions》(ICLR-2016)
【PANet】《Path Aggregation Network for Instance Segmentation》(CVPR-2018)
【BiSeNet】《BiSeNet:Bilateral Segmentation Network for Real-time Semantic Segmentation》(ECCV-2018)
【EmbedMask】《EmbedMask:Embedding Coupling for One-stage Instance Segmentation》(arXiv-2019)
【CenterMask】《CenterMask:Single Shot Instance segmentation with Point Representation》(CVPR-2020)
【PolyTransform】《PolyTransform:Deep Polygon Transformer for Instance Segmentation》(CVPR-2020)
【Point-Set】《Point-Set Anchors for Object Detection, Instance Segmentation and Pose Estimation》(ECCV-2020)
【Decouple】《Improving Semantic Segmentation via Decoupled Body and Edge Supervision》(ECCV-2020)
【STDC】《Rethinking BiSeNet For Real-time Semantic Segmentation》(CVPR-2021)
【MagNet】《Progressive Semantic Segmentation》(CVPR-2021)
【DDFD】《Multi-view Face Detection Using Deep Convolutional Neural Networks》(ICMR-2015)
【IoU Loss】《UnitBox: An Advanced Object Detection Network》(ACM MM-2016)
【FAS】《Face Anti-Spoofing Using Patch and Depth-Based CNNs》(IJCB-2017)
【Face Detection】《Face Detection using Deep Learning: An Improved Faster RCNN Approach》(Neurocomputing-2018)
【GDConv】《MobileFaceNets:Efficient CNNs for Accurate RealTime Face Verification on Mobile Devices》(CCBR-2018)
【CASIA-SURF】《A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing》(CVPR-2019)
【FAS-FRN】《Recognizing Multi-modal Face Spoofing with Face Recognition Networks》(CVPR-2019 workshop)
【FaceBagNet】《FaceBagNet:Bag-of-local-features Model for Multi-modal Face Anti-spoofing》(CVPR-2019 workshop)
【FeatherNets】《FeatherNets:Convolutional Neural Networks as Light as Feather for Face Anti-spoofing》(CVPR-2019 workshop)
【Cascade FPD】《Deep Convolutional Network Cascade for Facial Point Detection》(CVPR-2013)
【DeepPose】《DeepPose:Human Pose Estimation via Deep Neural Networks》(CVPR-2014)
【Stacked Hourglass】《Stacked Hourglass Networks for Human Pose Estimation》(ECCV-2016)
【HPM Block】《Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources》(ICCV-2017)
【PRMs】《Learning Feature Pyramids for Human Pose Estimation》(ICCV-2017)
【Heatmap+offset】《Towards Accurate Multi-person Pose Estimation in the Wild》(CVPR-2017)
【Simple Baselines】《Simple Baselines for Human Pose Estimation and Tracking》(ECCV-2018)
【CPN】《Cascaded Pyramid Network for Multi-Person Pose Estimation》(CVPR-2018)
【Knee Landmark】《KNEEL:Knee Anatomical Landmark Localization Using Hourglass Networks》(ICCVW-2019)
【HRNet】《Deep High-Resolution Representation Learning for Human Pose Estimation》(CVPR-2019)
【YOLT】《You Only Look Twice: Rapid Multi-Scale Object Detection In Satellite Imagery》(CVPR-2018被拒)
【WSI】《Faster R-CNN-Based Glomerular Detection in Multistained Human Whole Slide Images》(MDPI-2018)
【One Shot】《Siamese Neural Networks for One-shot Image Recognition》(ICML-2015)
【One Shot】《Matching Networks for One Shot Learning》(NIPS-2016)
【Noise-Label】《Learning from Noisy Labels with Deep Neural Networks》(arXiv-2014)
【Noise-Label】《Training a Neural Network Based on Unreliable Human Annotation of Medical Images》(ISBI-2018)
中国计算机学会推荐国际学术刊物
常见的评审制度有单盲评审(single-blind)、双盲评审(double-blind)和开放式评审(open review) 等。
以下几小段内容来自 2018年学术顶会:深度学习的江山如此多娇
我们可以看到这些学术顶会的论文提交数量不断增长,有些增幅甚至超 40%。那么一年过去了,合格的论文评审人员的增幅是否赶得上论文的增幅呢?
答案显而易见。今年 5 月,本科毕业生成为 NeurIPS 2018 论文同行评审的事情引发争议;7 月份,NeurIPS 2018 论文评审结果出来后,很多人吐槽评审意见不专业。几天后,GAN 之父Ian Goodfellow 发推质疑同行评审机制的作用,他认为同行评审导致 AI 顶会论文质量下降,而主要原因正在于评审人员水平不一。此前发表过「机器学习之怪现状」的 Zachary Lipton 同意 Goodfellow 的看法,认为同行评审机制的退化是机器学习怪现状的原因之一。
除了 Ian Goodfellow、Zachy Lipton 以外,Geoff Hinton 前不久接受采访时称,现在的评审制度和既定路径不利于创新性想法的提出和传播,junior 论文评审者可能压根无法理解创新性论文。关于此,国内学者也有类似看法,著名自然语言处理专家刘群教授说过:「审稿的时候……通常比较 junior 的审稿人会更严厉一些,发现一些小问题就会倾向于给低分,而 senior 的审稿人反倒宽松一些,如果觉得论文确有可取之处,通常不会太计较一些小问题。」此前,南京大学周志华教授称:「senior 知道论文价值就是那点新火花,有毛病没关系。前沿研究要有长处,系统开发要无短处。」
PAMI
《IEEE Transactions on Pattern Analysis and Machine Intelligence》是人工智能、模式识别、图像处理、计算机视觉领域的顶尖国际期刊之一,2016-2017年度影响因子为8.329,属于JCR TOP期刊,是计算机科学与人工智能领域的5个一区刊物之一。该杂志覆盖所有计算机视觉、图像理解、模式分析与识别等传统领域,以及部分机器智能领域,尤其强调模式分析的机器学习的前沿成果。
TMI
《IEEE Transactions on Medical Imaging》 (月刊,医学图像处理顶刊)
MIA
《Medical Image Analysis 》(月刊,医学图像处理顶刊)
AAAI (人工智能顶会,A类/年)
围绕人工智能的研究与发展,吸引了全球的人工智能精英。
CVPR(计算机视觉顶会,A类/年)
《IEEE Conference on Computer Vision and Pattern Recognition》。这个会上除了视觉的文章,还会有不少模式识别的文章,当然两方面的结合自然也是重点。下面是 14-20 年的 paper list 链接
https://openaccess.thecvf.com/CVPR2014
https://openaccess.thecvf.com/CVPR2015
https://openaccess.thecvf.com/CVPR2016
https://openaccess.thecvf.com/CVPR2017
https://openaccess.thecvf.com/CVPR2018
https://openaccess.thecvf.com/CVPR2019
https://openaccess.thecvf.com/CVPR2020
https://openaccess.thecvf.com/CVPR2021
ECCV(计算机视觉顶会,B类/两年)
《Europeon Conference on Computer Vision》,是一个欧洲的会议。虽然名字不是International,但是会议的级别不比前面两个差多少。欧洲人一般比较看中理论,但是从最近一次会议来看,似乎大家也开始注重应用了,oral里面的demo非常之多,演示效果很好,让人赏心悦目、叹为观止。不过欧洲的会有一个不好,就是他们的人通常英语口音很重,有些人甚至不太会说英文,所以开会和交流的时候,稍微有些费劲。
ICCV(计算机视觉顶会,A类/两年)
《International Comference on Computer Vision》,正如很多和他一样的名字的会议一行,这样最朴实的名字的会议,通常也是这方面最nb的会议。ICCV两年一次,与ECCV正好错开。
ICLR(深度学习顶会/年)
《International Conference on Learning Representations》国际学习表征会议,2013 年,深度学习巨头 Yoshua Bengio、Yann LeCun 主持举办了第一届 ICLR 大会。经过几年的发展,在深度学习火热的今天,ICLR 已经成为人工智能领域不可错过的盛会之一。
ICML(机器学习顶会,A类/年)
《International Conference on Machine Learning》国际机器学习大会。ICML如今已发展为由国际机器学习学会(IMLS)主办的年度机器学习国际顶级会议。
IJCAI(人工智能国际联合大会,A类/年)
《International Joint Conference on Artificial Intelligence》国际人工智能联合会议,是人工智能领域的顶级综合会议,原为单数年召开,自2015年起改为每年召开。
IPMI(医学图像处理顶会/两年)
《Information Processing in Medical Imaging 》
MICCAI(医学图像处理顶会/年)
《International Conference on Medical Image Computing and Computer Assisted Intervention 》
NIPS(人工智能顶会,A类/年)
《Conference and Workshop on Neural Information Processing Systems》 神经信息处理系统大会
是一个关于机器学习和计算神经科学的国际会议。该会议固定在每年的12月举行,由NIPS基金会主办。
Machine learning — Is the emperor wearing clothes? ↩︎