- 个人学习笔记7-6:动手学深度学习pytorch版-李沐
浪子L
深度学习深度学习笔记计算机视觉python人工智能神经网络pytorch
#人工智能##深度学习##语义分割##计算机视觉##神经网络#计算机视觉13.11全卷积网络全卷积网络(fullyconvolutionalnetwork,FCN)采用卷积神经网络实现了从图像像素到像素类别的变换。引入l转置卷积(transposedconvolution)实现的,输出的类别预测与输入图像在像素级别上具有一一对应关系:通道维的输出即该位置对应像素的类别预测。13.11.1构造模型下
- 景联文科技:专业数据标注公司,推动AI技术革新
景联文科技
人工智能
数据标注作为AI技术发展的重要支撑,对于训练高质量的机器学习模型以及推动应用领域的创新具有不可替代的作用。景联文科技作为专业的数据标注公司,致力于提供专业的数据标注服务,帮助客户解决AI链条中的数据处理难题,共同推动人工智能技术的进步与发展。一站式数据标注服务景联文科技提供一站式的数据标注服务,涵盖从图像、视频、音频到文本等多种数据类型。•图像标注:对象检测、语义分割、关键点标注、多边形标注等。•
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- 学习记录——语义分割和实例分割的标签结构
落叶击球
学习笔记学习人工智能
语义分割:一张样本,生成一张掩码图像标签。灰度图像,背景亮度为0,每个目标根据分类赋予不同亮度——1,2,3......实现像素级的类别区分,但无法区分个体。实例分割:原理:一张样本,生成一个多通道的Mat矩阵,也就是多张掩码图像叠在一起。每张掩码图负责存储一个类别的目标,亮度只有0和1,通过通道号区分每个类别。同时,每张掩码图内,每个目标拥有ID号(通过增加一个维度实现),负责区分一个类别中的每
- 语义分割训练精度计算
南太湖小蚂蚁
人工智能深度学习人工智能
语义分割训练的output结果一般是[batch_size,num_classes,width,height]这样的形式,而label的结果一般是[batch_size,width,height],类似如下形状,outputs:[4,6,480,320],而真值label:[4,480,320]。由于维度不同,无法直接比较,所以这两者要比较就要采取一点方法。output里面每个类型都有一个值,要取
- 语义分割笔记
Wils0nEdwards
笔记深度学习计算机视觉
在语义分割任务中,提升自制数据集上baselinemodel的平均交并比(mIoU)和平均精度(mAcc)的难度取决于多个因素。以下是一些关键因素及其对难度的影响:数据集质量:标注质量:高质量的标注对于训练有效的模型至关重要。如果标注存在错误或不一致,模型的性能会受到影响。样本数量:较大的数据集通常可以提升模型的泛化能力,但收集和标注大量样本是一个费时费力的过程。数据多样性:如果数据集包含多样化的
- 遥感影像-语义分割数据集:GID数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉人工智能机器学习
GID数据集:大规模高分卫星土地覆盖数据集原始数据集详情简介:GID是基于我国Gaofen-2卫星数据而构建的大规模高分辨率遥感图像土地覆盖数据集。GID数据集分为大规模分类集(GID-5)和精细土地覆盖集(GID-15)两个部分。大规模分类集(GID-5)包含建筑、农田、森林、草地和水域等5个土地覆盖类别,共计150景像素级标注的Gaofen-2卫星遥感图像。其中,训练集为120景图像,验证集为
- 遥感影像-语义分割数据集:Vaihingen数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉
原始数据集详情Vaihingen是一个相对较小的村庄,有许多独立的建筑和小的多层建筑。KeyValue卫星类型未知覆盖区域一个相对较小的村庄,有许多独立的建筑和小的多层建筑-Vaihingen场景城市分辨率5cm数量38张单张尺寸6000*6000原始影像位深8位标签图片位深8位原始影像通道数三通道标签图片通道数三通道官网https://www.isprs.org/education/benchm
- Atrous Spatial Pyramid Pooling(ASPP)空洞空间卷积池化金字塔
m0_55576290
深度学习人工智能
文章目录概要整体架构流程演化过程与代码实现概要ASPP主要用于解决语义分割任务中的尺度问题。在语义分割任务中,需要将图像中的每个像素分类到不同的类别中,而不同物体和结构在图像中可能有不同的尺度。传统的卷积神经网络在提取语义信息时,只能通过固定尺度的卷积核进行操作,因此无法很好地捕捉到不同尺度下的上下文信息。ASPP通过在网络中引入多个并行的分支,每个分支使用不同尺度的空洞卷积和池化操作,来捕获不同
- 深度学习,创新点,模型改进
揽星河@
计算机视觉机器学习深度学习python人工智能
深度学习添加创新点①在现有模型上添加自己的创新点②或者混合多个模型等等③提供创新点添加各种注意力机制,各种模型block。机器学习,目标检测,目标识别,语义分割,GAN,CNN等(只要是深度学习均可)编程语言限于Python,pytorch欢迎大家咨询~
- 【深度学习】COCO API源码解读
CS_Zero
深度学习人工智能
COCOAPI从C、cython,到PythonAPI:实现语义分割标注mask的解析,从具体实现cocoapi/common/maskApi.hcocoapi/common/maskApi.c到Cython封装实现pycocotools._maskcocoapi/PythonAPI/pycocotools/_mask.pyx#distutils:language=c#distutils:sour
- 2020-04-04
奋斗中的小强
SAN:Scale-AwareNetworkforSemanticSegmentationofHigh-ResolutionAerialImages高分辨率航空图像具有广泛的应用,如军事探索和城市规划。语义分割是高分辨率航空图像分析中广泛使用的一种基本方法。然而,高分辨率航空影像地物具有尺度不一致的特征,这一特征往往会导致预测结果的不确定性。为了解决这个问题,我们提出了一个新的尺度感知模块(SAM
- 计算机设计大赛 深度学习人体语义分割在弹幕防遮挡上的实现 - python
iuerfee
python
文章目录1前言1课题背景2技术原理和方法2.1基本原理2.2技术选型和方法3实例分割4实现效果5最后1前言优质竞赛项目系列,今天要分享的是深度学习人体语义分割在弹幕防遮挡上的应用该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:3分更多资料,项目分享:https://gitee.com/dancheng-senior/p
- [机器学习]详解transformer---小白篇
是安澜啊
深度学习神经网络
1.背景:Transformer是2017年的一篇论文《AttentionisAllYouNeed》提出的一种模型架构,这篇论文里只针对机器翻译这一种场景做了实验,并且由于encoder端是并行计算的,训练的时间被大大缩短了。全面击败了当时的SOTA,现阶段,Transformer在cv领域也是全面开花,基于transformer的目标识别,语义分割等算法也是经常屠榜。论文:[1706.03762
- 【深度学习每日小知识】全景分割
jcfszxc
深度学习术语表专栏深度学习人工智能
全景分割全景分割是一项计算机视觉任务,涉及将图像或视频分割成不同的对象及其各自的部分,并用相应的类别标记每个像素。与传统的语义分割相比,它是一种更全面的图像分割方法,传统的语义分割仅将图像划分为类别,而不考虑对象的部分。全景分割算法将语义分割和实例分割相结合,可以区分对象的一般类及其组成部分或实例。它们可以处理各种对象类,例如物体(例如天空、草地和道路)和事物(例如车辆、人和建筑物),并精确地分割
- 语义分割技术的简单总结
孤独患者_d589
几天前在公众号计算机视觉life上投稿了一篇文章,今天特此在这里mark一下,文章链接如下。https://mp.weixin.qq.com/s?__biz=MzIxOTczOTM4NA==&mid=2247488089&idx=1&sn=a7b18c154a84864521f2eb116585aee9&chksm=97d7f7cea0a07ed8da2a881efffc9a690c695b265
- 前向传播网络实现(类与函数)——TensorFlow2.4
SatVision炼金士
网络深度学习keras
文章目录前言一、基于类的前向传播二、基于函数的前向传播总结前言最近开始着手语义分割方面的内容,由于刚开始入门深度学习,看了一下deeplab的源码,里面所有网络结构基本上都是由类进行定义的(目的是为了方便复用),而大部分博主的复现代码基本上都是基于函数实现,作为小白的我一时有点蒙圈。为了更好地理解前向传播吧以及类与函数定义的网络结构,本文分别用类核函数实现了简单的前向传播函数提示:以下是本篇文章正
- 半监督语义分割论文学习记录
西瓜真的很皮啊
半监督语义分割深度学习机器学习人工智能
Semi-SupervisedSemanticSegmentationwithCross-ConsistencyTraining1.1motivation一致性训练的目的是在应用于输入的小扰动上增强模型预测的不变性。因此,学习的模型将对这样的小变化具有鲁棒性。一致性训练的有效性在很大程度上取决于数据分布的行为,即集群假设,其中类必须由低密度区域分隔。在语义分割中,在输入中,我们没有观察到低密度区域
- 2023最新半监督语义分割综述 | 技术总结与展望!
自动驾驶之心
计算机视觉人工智能深度学习python机器学习
作者|派派星编辑|CVHub点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取点击进入→自动驾驶之心【语义分割】技术交流群后台回复【分割综述】获取语义分割、实例分割、全景分割、弱监督分割等超全学习资料!Title:ASurveyonSemi-SupervisedSemanticSegmentationPaper:https://arxiv.org/pdf/2302.09899.pd
- 语义分割任务的准确率计算:基于PyTorch实现
高斯小哥
PyTorchpytorch人工智能pythonpycharm深度学习机器学习
语义分割任务的准确率计算:基于PyTorch实现文章目录引言语义分割任务概述准确率的定义与计算方法实践应用与优化策略准确率的局限性分析结尾引言随着深度学习技术的飞速发展,语义分割任务作为计算机视觉领域的一个重要分支,逐渐受到了广大研究者和开发者的关注。语义分割旨在将图像中的每个像素点划分到其所属的物体类别中,从而为图像赋予更为丰富的语义信息。准确率作为衡量语义分割模型性能的重要指标之一,其计算方式
- 【深度学习】: 脑部MRI图像分割
X.AI666
深度学习深度学习人工智能
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~案例4:脑部MRI图像分割相关知识点:语义分割、医学图像处理(skimage,medpy)、可视化(matplotlib)1任务
- kaggle实战语义分割-Car segmentation(附源码)
橘柚jvyou
python人工智能计算机视觉深度学习pytorch
目录前言项目介绍数据集处理数据集加载定义网络训练网络验证网络前言本篇文章会讲解使用pytorch完成另外一个计算机视觉的基本任务-语义分割。语义分割是将图片中每个部分根据其语义分割出来,其相比于图像分类的不同点是,图像分类是对一张图片进行分类,而语义分割是对图像中的每个像素点进行分类。我们这里使用的语义分割数据集是kaggle上的一个数据集。数据集来源:https://www.kaggle.com
- 【大厂AI课学习笔记】【1.5 AI技术领域】(7)图像分割
giszz
学习笔记人工智能学习笔记
今天学习到了图像分割。这是我学习笔记的脑图。图像分割,ImageSegmentation,就是将数字图像分割为若干个图像子区域(像素的集合,也被称为超像素),改变图像的表达方式,以更容易理解和分析。图像分割,十分重要,也十分困难,是计算机视觉中的关键步骤。图像分割分为三类:语义分割。预测出输入熟悉的每个像素点属于哪一类的标签实例分割。在语义分割的基础上,还要区分出同一类的不同个体全景分割。在实例分
- SAM大模型遥感领域测评
未来GIS实验室
计算机视觉深度学习人工智能
1.引言随着OpenAI公司ChatGPT的火爆,国内外科技公司都陆续发布自然语言通用领域大模型。而图像领域AI,一时间没了热度。转机出现在上个月,Meta发布了分割万物的视觉通大模型SegmentAnythingModel(SAM)。关注图像或者遥感语义分割的同事可能知道,语义分割作为计算机视觉的核心任务,应用广泛,但最大的限制就是需要大量的标注数据,并且针对不同的任务需要重新训练或微调,试想,
- 实例分割模型解析:solo模型
交换喜悲
mdetection系列人工智能目标检测计算机视觉深度学习
论文链接:https://arxiv.org/abs/1912.04488代码:https://github.com/WXinlong/SOLO1.摘要我们提出了一种新的、极其简单的实例分割方法。与许多其他密集预测任务(例如语义分割)相比,任意数量的实例使得实例分割更具挑战性。为了预测每个实例的掩码,主流方法要么遵循“检测然后分段”策略(例如,MaskR-CNN),要么首先预测嵌入向量,然后使用聚
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- 周报(20240204)
来自宇宙的曹先生
研究生阶段周报周报
日期:2024.1.29-2024.2.4本周工作:1.阅读论文本周主要对这篇文献进行了阅读:《用可学习的跳跃连接缩小U-Net中的语义差距:以医学图像分割为例》背景医学图像分割和随后对目标对象的定量评估为疾病诊断和治疗规划提供了有价值的信息。最近的语义分割方法通常依赖于类UNet的编码器-解码器架构,其中编码器产生高级语义特征,解码器逐渐对这些隐藏特征进行上采样,以产生具有每像素概率的分割图。大
- InstantID: Zero-shot Identity-Preserving Generation in Seconds
猛码Memmat
rob-agent/aigc图像生成深度学习计算机视觉
文章目录IntroductionMainReference记录由国内首创的一个好玩的小项目,图像生成领域的新进展。但我希望现阶段计算机视觉领域的研究能更聚焦在语义分割和三维视觉上,这样能更方便与机器人等产品和工业实体结合。IntroductionInstantID是一个基于扩散模型的图像生成解决方案,能实现从单一参考图像到多样化风格化写真的快速生成。用户只需上传一张自拍,20秒就能得到定制版AI写
- 基于YOLOv8的船舶目标检测系统(Python源码+Pyqt6界面+数据集)
AI小怪兽
深度学习实战应用案列108篇人工智能深度学习机器学习YOLO计算机视觉开发语言
博主简介AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;原创自研系列,2024年计算机视觉顶会创新点《YOLOv8原创自研》《YOLOv5原创自研》《YOLOv7原创自研》23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高《YOLOv8魔术师》《YOL
- CACDU-Net: A Novel DoubleU-Net BasedSemantic Segmentation Model for SkinLesions Detection in Image
我在努力学习分割(禁止说我水平差)
人工智能
CACDU-Net:一种新的基于双u-net的图像皮肤损伤语义分割模型摘要皮肤病变分割是皮肤病学领域的一项重要任务,它有助于早期发现和诊断皮肤病。深度学习技术在实现准确的病灶分割方面显示出巨大的潜力。在这些技术的帮助下,病灶分割过程可以自动化,从而减少了人工操作和主观判断的影响。这有助于节省医疗专业人员的时间和减少他们的工作量,从而提高他们的工作效率,并使医疗资源得到更好的分配。为了更好地进行皮肤
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc