毕业设计之 - 教程:MPU6050姿态解算

文章目录

  • 1 简介
  • 2 MPU6050
  • 3 工作原理
  • 4 单片机与MPU6050通信
    • 4.1 mpu6050 数据格式
    • 4.2 倾角计算方法
  • 5 实现代码
  • 6 最后


1 简介

Hi,大家好,这里是丹成学长,今天向大家介绍一个学长做的单片机项目

教程:MPU6050姿态解算

大家可用于 课程设计 或 毕业设计

2 MPU6050

MPU6050是一种非常流行的空间运动传感器芯片,可以获取器件当前的三个加速度分量和三个旋转角速度。由于其体积小巧,功能强大,精度较高,不仅被广泛应用于工业,同时也是航模爱好者的神器,被安装在各类飞行器上驰骋蓝天。

随着Arduino开发板的普及,许多朋友希望能够自己制作基于MPU6050的控制系统,但由于缺乏专业知识而难以上手。此外,MPU6050的数据是有较大噪音的,若不进行滤波会对整个控制系统的精准确带来严重影响。

MPU6050芯片内自带了一个数据处理子模块DMP,已经内置了滤波算法,在许多应用中使用DMP输出的数据已经能够很好的满足要求。关于如何获取DMP的输出数据,我将在以后的文章中介绍。本文将直接面对原始测量数据,从连线、芯片通信开始一步一步教你如何利用Arduino获取MPU6050的数据并进行卡尔曼滤波,最终获得稳定的系统运动状态。

毕业设计之 - 教程:MPU6050姿态解算_第1张图片

3 工作原理

毕业设计之 - 教程:MPU6050姿态解算_第2张图片
加速度计采用压电效应的工作原理,就像上面的图片一样,在一个立方体的盒子里面有一个小球,盒子的四壁是用压电晶体材料,当盒子倾斜时,由于重力的作用,球就会向倾斜的方向移动,当小球碰到墙壁就会产生压电电流。盒子中有上下、左右、前后三对相对的墙壁,每一对墙对应于三维空间中的一个轴:X轴、Y轴、Z轴。根据压电壁产生的电流,我们就可以确定倾角的方向和大小。

4 单片机与MPU6050通信

这里以arduino单片机为例

为避免纠缠于电路细节,我们直接使用集成的MPU6050模块。MPU6050的数据接口用的是I2C总线协议,因此我们需要Wire程序库的帮助来实现Arduino与MPU6050之间的通信。请先确认你的Arduino编程环境中已安装Wire库。

Wire库的官方文档中指出:在UNO板子上,SDA接口对应的是A4引脚,SCL对应的是A5引脚。MPU6050需要5V的电源,可由UNO板直接供电。按照下图连线。

毕业设计之 - 教程:MPU6050姿态解算_第3张图片

4.1 mpu6050 数据格式

我们感兴趣的数据位于0x3B到0x48这14个字节的寄存器中。这些数据会被动态更新,更新频率最高可达1000HZ。下面列出相关寄存器的地址,数据的名称。注意,每个数据都是2个字节。

  • 0x3B,加速度计的X轴分量ACC_X
  • 0x3D,加速度计的Y轴分量ACC_Y
  • 0x3F,加速度计的Z轴分量ACC_Z
  • 0x41,当前温度TEMP
  • 0x43,绕X轴旋转的角速度GYR_X
  • 0x45,绕Y轴旋转的角速度GYR_Y
  • 0x47,绕Z轴旋转的角速度GYR_Z

4.2 倾角计算方法

Roll-pitch-yaw模型与姿态计算

表示飞行器当前飞行姿态的一个通用模型就是建立下图所示坐标系,并用Roll表示绕X轴的旋转,Pitch表示绕Y轴的旋转,Yaw表示绕Z轴的旋转。

毕业设计之 - 教程:MPU6050姿态解算_第4张图片
毕业设计之 - 教程:MPU6050姿态解算_第5张图片
Yaw角的问题

因为没有参考量,所以无法求出当前的Yaw角的绝对角度,只能得到Yaw的变化量,也就是角速度GYR_Z。当然,我们可以通过对GYR_Z积分的方法来推算当前Yaw角(以初始值为准),但由于测量精度的问题,推算值会发生漂移,一段时间后就完全失去意义了。然而在大多数应用中,比如无人机,只需要获得GRY_Z就可以了。

如果必须要获得绝对的Yaw角,那么应当选用MPU9250这款九轴运动跟踪芯片,它可以提供额外的三轴罗盘数据,这样我们就可以根据地球磁场方向来计算Yaw角了,具体方法此处不再赘述。

5 实现代码

// 本代码版权归Devymex所有,以GNU GENERAL PUBLIC LICENSE V3.0发布
// http://www.gnu.org/licenses/gpl-3.0.en.html
// 相关文档参见作者于知乎专栏发表的原创文章:
// http://zhuanlan.zhihu.com/devymex/20082486

//连线方法
//MPU-UNO
//VCC-VCC
//GND-GND
//SCL-A5
//SDA-A4
//INT-2 (Optional)

#include 
#include 
#include 

float fRad2Deg = 57.295779513f; //将弧度转为角度的乘数
const int MPU = 0x68; //MPU-6050的I2C地址
const int nValCnt = 7; //一次读取寄存器的数量

const int nCalibTimes = 1000; //校准时读数的次数
int calibData[nValCnt]; //校准数据

unsigned long nLastTime = 0; //上一次读数的时间
float fLastRoll = 0.0f; //上一次滤波得到的Roll角
float fLastPitch = 0.0f; //上一次滤波得到的Pitch角
Kalman kalmanRoll; //Roll角滤波器
Kalman kalmanPitch; //Pitch角滤波器

void setup() {
  Serial.begin(9600); //初始化串口,指定波特率
  Wire.begin(); //初始化Wire库
  WriteMPUReg(0x6B, 0); //启动MPU6050设备

  Calibration(); //执行校准
  nLastTime = micros(); //记录当前时间
}

void loop() {
  int readouts[nValCnt];
  ReadAccGyr(readouts); //读出测量值
  
  float realVals[7];
  Rectify(readouts, realVals); //根据校准的偏移量进行纠正

  //计算加速度向量的模长,均以g为单位
  float fNorm = sqrt(realVals[0] * realVals[0] + realVals[1] * realVals[1] + realVals[2] * realVals[2]);
  float fRoll = GetRoll(realVals, fNorm); //计算Roll角
  if (realVals[1] > 0) {
    fRoll = -fRoll;
  }
  float fPitch = GetPitch(realVals, fNorm); //计算Pitch角
  if (realVals[0] < 0) {
    fPitch = -fPitch;
  }

  //计算两次测量的时间间隔dt,以秒为单位
  unsigned long nCurTime = micros();
  float dt = (double)(nCurTime - nLastTime) / 1000000.0;
  //对Roll角和Pitch角进行卡尔曼滤波
  float fNewRoll = kalmanRoll.getAngle(fRoll, realVals[4], dt);
  float fNewPitch = kalmanPitch.getAngle(fPitch, realVals[5], dt);
  //跟据滤波值计算角度速
  float fRollRate = (fNewRoll - fLastRoll) / dt;
  float fPitchRate = (fNewPitch - fLastPitch) / dt;
 
 //更新Roll角和Pitch角
  fLastRoll = fNewRoll;
  fLastPitch = fNewPitch;
  //更新本次测的时间
  nLastTime = nCurTime;

  //向串口打印输出Roll角和Pitch角,运行时在Arduino的串口监视器中查看
  Serial.print("Roll:");
  Serial.print(fNewRoll); Serial.print('(');
  Serial.print(fRollRate); Serial.print("),\tPitch:");
  Serial.print(fNewPitch); Serial.print('(');
  Serial.print(fPitchRate); Serial.print(")\n");
  delay(10);
}

//向MPU6050写入一个字节的数据
//指定寄存器地址与一个字节的值
void WriteMPUReg(int nReg, unsigned char nVal) {
  Wire.beginTransmission(MPU);
  Wire.write(nReg);
  Wire.write(nVal);
  Wire.endTransmission(true);
}

//从MPU6050读出一个字节的数据
//指定寄存器地址,返回读出的值
unsigned char ReadMPUReg(int nReg) {
  Wire.beginTransmission(MPU);
  Wire.write(nReg);
  Wire.requestFrom(MPU, 1, true);
  Wire.endTransmission(true);
  return Wire.read();
}

//从MPU6050读出加速度计三个分量、温度和三个角速度计
//保存在指定的数组中
void ReadAccGyr(int *pVals) {
  Wire.beginTransmission(MPU);
  Wire.write(0x3B);
  Wire.requestFrom(MPU, nValCnt * 2, true);
  Wire.endTransmission(true);
  for (long i = 0; i < nValCnt; ++i) {
    pVals[i] = Wire.read() << 8 | Wire.read();
  }
}

//对大量读数进行统计,校准平均偏移量
void Calibration()
{
  float valSums[7] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0};
  //先求和
  for (int i = 0; i < nCalibTimes; ++i) {
    int mpuVals[nValCnt];
    ReadAccGyr(mpuVals);
    for (int j = 0; j < nValCnt; ++j) {
      valSums[j] += mpuVals[j];
    }
  }
  //再求平均
  for (int i = 0; i < nValCnt; ++i) {
    calibData[i] = int(valSums[i] / nCalibTimes);
  }
  calibData[2] += 16384; //设芯片Z轴竖直向下,设定静态工作点。
}

//算得Roll角。算法见文档。
float GetRoll(float *pRealVals, float fNorm) {
  float fNormXZ = sqrt(pRealVals[0] * pRealVals[0] + pRealVals[2] * pRealVals[2]);
  float fCos = fNormXZ / fNorm;
  return acos(fCos) * fRad2Deg;
}

//算得Pitch角。算法见文档。
float GetPitch(float *pRealVals, float fNorm) {
  float fNormYZ = sqrt(pRealVals[1] * pRealVals[1] + pRealVals[2] * pRealVals[2]);
  float fCos = fNormYZ / fNorm;
  return acos(fCos) * fRad2Deg;
}

//对读数进行纠正,消除偏移,并转换为物理量。公式见文档。
void Rectify(int *pReadout, float *pRealVals) {
  for (int i = 0; i < 3; ++i) {
    pRealVals[i] = (float)(pReadout[i] - calibData[i]) / 16384.0f;
  }
  pRealVals[3] = pReadout[3] / 340.0f + 36.53;
  for (int i = 4; i < 7; ++i) {
    pRealVals[i] = (float)(pReadout[i] - calibData[i]) / 131.0f;
  }
}

实现效果:

6 最后

单片机毕设项目大全:
https://blog.csdn.net/huawei123444/article/details/119822845

你可能感兴趣的:(单片机设计,单片机,毕业设计,姿态解算,mpu6050,计算机毕设)