六个实用Pandas数据处理代码

前言:

今天和大家分享自己总结的6个常用的Pandas数据处理代码,对于经常处理数据的coder最好熟练掌握。

选取有空值的行

在观察数据结构时,该方法可以快速定位存在缺失值的行。

df = pd.DataFrame({'A': [0, 1, 2],
                   'B': [0, 1, None],
                   'C': [0, None, 2]})
df[df.isnull().T.any()]

输出:

  A   B   C           A   B   C
0 0 0.0 0.0         1 1 1.0 NaN
1 1 1.0 NaN   -->   2 2 NaN 2.0
2 2 NaN 2.0

快速替换列值

实际数据处理经常会根据一些限定条件来替换列中的值。

df = pd.DataFrame({'name':['Python', 'Java', 'C']})
# 第一种方式
df['name'].replace('Java', 'JavaScript', inplace=True)
# 第二种方式
df.loc[df['name'].str.contains('Java'), 'name'] = 'JavaScript'

输出:

     name                   name
0  Python          0      Python
1    Java    --->  1  JavaScript
2       C          2           C

对列进行分区

很多情况下,对于数值类型的数据,我们需要分区来计算每个区间数据出现的频率。这时用 pd.cut 就能很好的解决这一问题。

import random
age = random.sample(range(90), 20)
cut_res = pd.cut(age, bins=[0, 18, 35, 60, 90])
# cut_res type:
cut_res.value_counts()

输出:

(0, 18]     6
(18, 35]    1
(35, 60]    6
(60, 90]    7

将一列分为多列

在文本数据清洗时,一些列中存在分隔符('', ',', ':')分隔的值,我们只需将该列根据分隔符进行 split 即可。

import pandas as pd
df = pd.DataFrame({'address': ['四川省 成都市',
                               '湖北省 武汉市',
                               '浙江省 杭州市']})
res = df['address'].str.split(' ', expand=True)  
res.columns = ['province', 'city']

输出:

  province city
0 四川省    成都市
1 湖北省    武汉市
2 浙江省    杭州市

expand参数选择是否扩展为 DataFrame,False 则返回 Series

中文筛选

同样在清洗过程中,往往会出现一些不需要的中文字段,这时直接用 str.contains 筛选即可。

df = pd.DataFrame({'mobile_phone':
                   ['15928765644',
                    '15567332235',
                    '暂无']})
df[~df['mobile_phone'].str.contains('[\u4e00-\u9fa5]')]

输出:

  mobile_phone         mobile_phone
0 15928765644        0 15928765644
1 15567332235   -->  1 15567332235
2 暂无

更改列的位置

有时我们需要调整列的位置,当数据列较少时,可以用下面的方式

df = pd.DataFrame({'name': ['A', 'B', 'C'],
                   'age': [10, 20, 30],
                   'gender': [0, 1, 0]})
df = df[['name', 'gender', 'age']]

输出:

 name age gender    name gender age
0   A  10 0        0   A 0       10
1   B  20 1   -->  1   B 1       20
2   C  30 0        2   C 0       30

如果列较多,那么,一个个列举出来会比较繁琐,推荐下面插入的方式。

col = df['gender']
df.drop('gender', axis=1, inplace=True)
df.insert(1, 'gender', col)

这就是今天分享的主要内容,实践永远是最好的学习方式,记忆的也更牢固。

到此这篇关于六个实用Pandas数据处理代码的文章就介绍到这了,更多相关 Pandas数据处理 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

你可能感兴趣的:(六个实用Pandas数据处理代码)