- 【CSS 面经】元素的层叠顺序
Peter-Lu
#CSS面经css前端htmlecmascriptjavascript
文章目录一、层叠顺序的基本概念1.视觉层叠2.默认层叠顺序二、如何控制元素的层叠顺序?1.`z-index`属性示例:使用`z-index`控制元素层叠顺序2.`position`属性与层叠顺序示例:不同`position`设置下的层叠顺序3.`z-index`和堆叠上下文示例:堆叠上下文三、总结在网页设计中,元素的层叠顺序(StackingOrder)是指在同一页面上,多个元素如何相互叠加的规则
- FastDVDnet:基于深度学习的视频去噪框架
陆可鹃Joey
FastDVDnet:基于深度学习的视频去噪框架项目地址:https://gitcode.com/gh_mirrors/fa/fastdvdnet项目介绍FastDVDnet是一个高效、开源的深度学习模型,专注于视频去噪。该项目由MatteoTassano开发并维护,旨在提供一种快速且有效的解决方案,以消除视频中的噪声,同时保持图像细节和自然纹理。它利用了时间域的连续性和深层神经网络的力量,确保在
- 基于 KTransformers的DeepSeek-R1 本地部署方案,成本骤降32倍!
爱科技Ai
LLM人工智能
随着DeepSeek-R1模型在全球范围内的流行,越来越多的用户开始在本地尝试部署该模型。然而,高昂的硬件需求和成本让许多公司望而却步。本文将深入探讨DeepSeek-R1部署中的挑战,并介绍一款创新框架KTransformers,它能够显著降低大规模模型部署的成本并提高推理效率,从而帮助更多中小企业有效部署此类高级AI模型。本地部署“成本骤降32倍”,助力R1真正落地「中小企业」中!1.Deep
- 手撕multi-head self attention 代码
心若成风、
自然语言处理语言模型transformer
在深度学习和自然语言处理领域,多头自注意力(Multi-HeadSelf-Attention)机制是Transformer模型中的核心组件之一。它允许模型在处理序列数据时,能够同时关注序列中的不同位置,从而捕获到丰富的上下文信息。下面,我们将详细解析多头自注意力机制的实现代码。一、概述多头自注意力机制的核心思想是将输入序列进行多次线性变换,然后分别计算自注意力得分,最后将所有头的输出进行拼接,并通
- 深度学习 Deep Learning 第2章 线性代数
odoo中国
AI编程人工智能深度学习线性代数人工智能
深度学习第2章线性代数线性代数是深度学习的语言。张量操作是神经网络计算的基石,矩阵乘法是前向传播的核心,范数约束模型复杂度,而生成空间理论揭示模型表达能力的本质。本章介绍线性代数的基本内容,为进一步学习深度学习做准备。主要内容2.1标量、向量、矩阵和张量标量:单个数字,用斜体表示,通常赋予小写字母变量名。向量:数字数组,按顺序排列,用粗体小写字母表示,元素通过下标访问。矩阵:二维数字数组,用粗体大
- Matlab多种算法解决未来杯B的多分类问题
Subject.625Ruben
算法分类机器学习数学建模未来杯matlab人工智能
1.读取数据首先,我们从Excel文件中读取训练集和测试集:2.训练集划分我们将80%的数据用于训练,20%用于验证。3.训练多个模型我们选取8种常见分类模型,并存储预测结果。fori=1:length(modelNames)switchmodelNames{i}case'MultinomialLogisticRegression'B=mnrfit(X_train,Y_train,'model',
- 【prompt实战】知乎问题解答专家
姚瑞南
prompt实战应用案例prompt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)#Role:知乎问题解答分类专家##Profile:你是一个知乎问题解答分类专家,主要帮助用户解答各类领域专业问题,包括但不限于金融领域、职场问题、互联网领域、科技领域、人工智能领域
- 基于群智能算法的三维无线传感网络覆盖优化数学模型-可以使用群智能算法直接调用进行优化,完整MATLAB代码
算法小狂人
算法应用matlabphp开发语言
1.1三维覆盖模型由于节点随机抛洒,而传感器节点的分布情况会影响网络覆盖率,以RcovR_{\text{cov}}Rcov作为覆盖率评价标准。在三维覆盖区域中,传感器节点的覆盖区域是某一半径确定的球。在三维监测区域中随机抛洒NNN个传感器节点,形成节点集S={s1,s2,s3,⋯ ,sN}S=\{s_1,s_2,s_3,\cdots,s_N\}S={s1,s2,s3,⋯,sN},第iii个节点的坐
- 【matlab代码】基于RSSI的wifi定位例程(三维空间,自适应基站的数量)
MATLAB卡尔曼
定位与导航1024程序员节matlab开发语言定位导航蓝牙
文章目录程序概述程序运行运行方法运行结果代码各模块的功能源代码总结程序概述该程序基于RSSI(接收信号强度指示)原理实现Wi-Fi定位,适用于在三维空间中定位未知点。程序通过多个锚点(基站)测量信号强度,并计算目标点的位置。程序使用以下公式进行位置计算:路径损耗模型公式:RSSI=A−10nlog10(d)RSSI=A-10n\log_{10}(d)RSSI=A−10nlog10(d)其中:RS
- 如何使用 Spring Boot 实现分页和排序
大G哥
springboot后端javaspring
在SpringBoot中实现分页和排序通常是通过SpringDataJPA或者SpringDataMongoDB提供的分页功能来完成的。以下是一个基于SpringDataJPA的分页和排序实现的基本步骤。1.添加依赖首先,确保你在pom.xml中包含了SpringDataJPA和数据库驱动的依赖。org.springframework.bootspring-boot-starter-data-jp
- 【大模型对话 的界面搭建-Open WebUI】
y_dd
人工智能深度学习人工智能llama语言模型
OpenWebUI前身就是OllamaWebUI,为Ollama提供一个可视化界面,可以完全离线运行,支持Ollama和兼容OpenAI的API。github网址https://github.com/open-webui/open-webui安装第一种docker安装如果ollama安装在同一台服务器上:dockerrun-d-p3000:8080--add-host=host.docker.in
- 程序员必看!DeepSeek全栈开发指南:从代码生成到分布式训练的黑科技解析
AI创享派
后端
一、DeepSeek技术新突破:程序员必须掌握的MoE架构实战2025年2月25日,DeepSeek开源了专为MoE模型设计的DeepEP通信库,这项技术革新直接影响了分布式训练和推理效率。该库支持FP8精度与NVLink/RDMA技术,吞吐量提升3倍以上,特别适合处理千亿级参数的分布式任务。对于后端工程师而言,DeepEP的以下特性值得关注:计算-通信重叠机制:通过回调函数实现GPU资源动态分配
- 【大模型UI\多模型回复UI】
Ai君臣
LLMS微调ui大LLMSUI
文章目录1、开源大模型用户界面(UI)2、同时让多个模型回复UI1、开源大模型用户界面(UI)LobeChatOpenWebUI:这是一款功能丰富且用户友好的开源自托管AI界面,旨在完全离线运行。它支持多种大型语言模型(LLM),包括Ollama和兼容OpenAI的API。OpenWebUI提供直观的界面,支持多模型和多模态交互,具有全面的Markdown和LaTeX支持,以及本地RAG集成等功能
- 【Gee】项目总结:模仿 GIN 实现简单的 Golang Web 框架
YGGP
GolangProjectgolang
文章目录Gee项目回顾Gee项目总结Golang已经具备基础的web功能,为什么还需要web框架?作为web框架,Gee框架完成了哪些功能?如何用Gee来构建web项目?Gee项目回顾上个月月末我按照Geektutu的教程,实现了Gee这个基于Golang的简单Web框架,但是一直没有进行复盘总结。学习Gee的八篇文章的链接如下:【Gee】7天用Go从零实现Web框架Gee【Gee】Day1:HT
- 大模型的webui
Zain Lau
人工智能python昇腾Ascend天数
exportXXX_LLM_C=~/xcore-llm/build/ReleaseexportCUDA_VISIBLE_DEVICES=2,3exportCUDACXX=/usr/local/cuda-12.3/bin/nvccnohup/usr/bin/python3/home/src/api_server/api_server.py--modelLLama2:7b-chat-hf_A800--
- openssl TLS 单向认证
spring*-*
网络服务器运维
下面是一个简单的C语言程序示例,它展示了如何使用OpenSSL来实现基于TLS的加密TCP通信。这个程序包括一个服务器和一个客户端,它们通过TLS加密的TCP连接进行通信。步骤概览初始化OpenSSL库。创建SSL上下文(SSL_CTX)。在服务器端,加载服务器证书和私钥;在客户端,加载CA证书。使用SSL套接字进行加密通信。服务器端代码c复制代码#include#include#include#
- 大模型+智能代理:自动化测试的终极组合?
测试者家园
软件测试质量效能人工智能人工智能软件测试质量效能职场和发展AI赋能智能体LLM
用ChatGPT做软件测试在软件测试领域,自动化测试的目标一直是提高测试效率、减少人工干预、提升缺陷发现率。然而,传统自动化测试仍然面临诸多挑战,例如脚本维护成本高、难以应对动态UI变化、测试数据生成受限,以及难以覆盖复杂业务逻辑。近年来,大模型(LLM,LargeLanguageModel)+智能代理(Agent)的结合,为自动化测试带来了新的可能性。这种“智能测试代理”能够利用大模型的自然语言
- 【PCDN】2020架构: 提高穿透和分享、BGP协议
等风来不如迎风去
传输探索实践架构服务器运维
小溪流科技自研海外PCDN系统技术架构与演进转载自腾讯云文/张道远整理/核心组网我们自己的P2P组网模型。我们采用了树形组网,但是我们规避优化了传统树形模型的缺点。为防止延时过高,我们在调度时会严格控制树形高度。为弥补父节点掉线造成孤儿状态的不足,我们使系统中每个节点都首先从CDN拉流。如果出现父节点掉线的情况,它立即向服务器补片,同时触发新的组网。对于纯粹的消费者模型,我们目前有两种方案,其中一
- 大语言模型原理与工程实践:大语言模型强化对齐
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:大语言模型强化对齐作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的迅猛发展,大语言模型(LargeLanguageModels,LLMs)如GPT-3、LaMDA等,在自然语言处理(NLP)领域取得了显著的突破。这些模型在问答、翻译、文本生成等方面展现出惊人的能力,但同时也引发了
- LLM对齐方法作用:主要解决大型语言模型(LLMs)输出与人类价值观、需求和安全规范不一致的问题
ZhangJiQun&MXP
2021AIpython2024大模型以及算力2021数字交易数字资产语言模型安全人工智能机器学习自然语言处理算法
LLM对齐方法作用:主要解决大型语言模型(LLMs)输出与人类价值观、需求和安全规范不一致的问题对齐方法(AlignmentMethods)主要解决大型语言模型(LLMs)输出与人类价值观、需求和安全规范不一致的问题。其核心目标是让模型生成的内容更符合人类预期,同时确保伦理合规性和实用性。以下是对齐方法解决的具体问题及典型场景:1.安全性与伦理问题问题:基础LLMs可能生成有害内容(如暴力、歧视、
- LabVIEW cRIO中CSV文件的读取
LabVIEW开发
LabVIEW知识LabVIEW功能CRIO
在LabVIEWcRIO中读取CSV文件,需通过文件传输、路径配置、数据解析等步骤实现。本文详细说明如何通过代码读取本地存储的CSV文件,并探讨直接通过对话框选择文件的可行性及替代方案。一、CSV文件传输至cRIO本地存储1.使用NIMAX文件管理步骤:打开NIMAX(Measurement&AutomationExplorer)。连接目标cRIO设备,进入“文件”选项卡。选择路径(如/c/),点
- 【AI热点】Manus技术细致洞察报告(篇2)
碣石潇湘无限路
人工智能
针对大家对Manus产品褒贬不一的现象,基于近期对Manus的多方实测、公开信息与开源竞品的比对分析而撰写,旨在为从业者、技术爱好者以及潜在用户提供一个较为系统、专业的视角。报告将围绕Manus的核心原理、功能特点、技术亮点、常见应用场景与不足,以及与其他Agent产品和开源方案的对比进行深入探讨。1.引言与背景1.1产品崛起与「全自主通用Agent」的概念自2023年底至2024年初,大模型及其
- 点亮绿色未来:走进综合能源服务认证
AEMC马广川
能源java前端服务器大数据人工智能
能源,是城市运转的血液,也是社会发展的动力。然而,传统的能源利用方式正面临着资源紧张、环境污染等挑战。如何破解能源困局,构建清洁低碳、安全高效的能源体系?综合能源服务认证,为我们提供了一把开启绿色未来的钥匙。一、认证的意义:为绿色未来保驾护航想象一下,未来的城市,高楼大厦不再是被冰冷的钢筋水泥包裹,而是披上了一层“绿色外衣”。这层“外衣”不仅能遮风挡雨,还能吸收太阳能、风能,为建筑提供清洁能源。而
- Python 爬取大量数据如何并发抓取与性能优化
chusheng1840
Python教程python性能优化开发语言
Python并发抓取与性能优化在进行网络爬虫开发时,爬取大量数据可能非常耗时。尤其是在处理许多网页或API请求时,逐个请求速度会非常慢。为了解决这个问题,我们可以通过并发抓取提高爬取效率。同时,通过性能优化来进一步减少耗时和资源占用,使爬虫更高效。本篇文章将带大家了解Python中常用的并发抓取方法,并介绍如何进行性能优化。1.并发抓取的基本概念并发抓取指的是同时发出多个请求的技术,而不是顺序地等
- 鸿蒙HarmonyOS开发系列:WebSocket消息发送应用示例
太空人_喜之郎
HarmonyOS鸿蒙OpenHarmonyharmonyos华为前端linux鸿蒙移动开发程序员
1.WebSocket简介WebSocket协议最初于2011年通过RFC6455完成了标准定义,后来又通过RFC7936、RFC8307、RFC8441等标准对协议进行了完善。WebSocket位于网络分层模型的应用层,是建立在TCP之上的双向通讯协议,可以在一个TCP连接上进行全双工通信;和HTTP不同的是,WebSocket通讯需要服务端和客户端先通过握手连接,连接成功后才能相互通信。2.W
- 破解“光伏+储能+充电”一体化难题!安科瑞全方案打造智慧能源新标杆
Acrelgq23
能源
安科瑞顾强破解“光伏+储能+充电”一体化难题!安科瑞全方案打造智慧能源新标杆在“双碳”目标驱动下,光伏储能与充电桩的融合成为能源转型的关键场景。然而,多电源协同、保护逻辑冲突、运维可靠性低等难题,让许多充电站项目陷入“技术泥潭”。如何破局?安科瑞以全栈技术方案给出答案——从智能继电保护到智慧能源管理,一站式解决光储充一体化设计痛点,助力充电站高效、安全、经济运营!痛点直击:光储充一体化为何难落地?
- 【机器学习】基于t-SNE数据可视化工程
无水先生
AI原理和python实现人工智能综合人工智能算法
一、说明t-SNE(t-DistributedStochasticNeighborEmbedding)是一种常用的非线性降维技术。它可以将高维数据映射到一个低维空间(通常是2D或3D)来便于可视化。Scikit-learnAPI提供TSNE类,以使用T-SNE方法可视化数据。在本教程中,我们将简要学习如何在Python中使用TSNE拟合和可视化数据。二、t-SNE是个什么?2.1什么是t-SNE?
- 数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践
kkchenkx
数据挖掘信息可视化算法聚类均值算法数据挖掘机器学习
数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践数据降维简介降维技术的重要性在数据科学和机器学习领域,数据降维是一种关键的技术,用于减少数据集的维度,同时保留数据的结构和重要信息。降维不仅可以帮助我们更有效地存储和处理数据,还能在高维数据中发现潜在的模式和结构,这对于数据可视化和模型训练尤为重要。高维数据往往难以直观理解,通过降维,我们可以将其转换为二维或三维空间,便于可视化
- MySQL 深度分页如何优化?
司徒阿宝
mysql数据库
例如select*fromt1orderby10000,10查询10000-10010页数据,mysql会先查询出100010页,再抛弃100000。这个操作会产生大量的无用IO/CPU消耗范围查询1.当ID能保证连续无空缺时,可以使用范围查询。select*fromt1whereid>{seed_id}andid{seed_id}limit10子查询我们先查询出limit第一个参数对应的主键值,
- 第20篇:从零开始构建NLP项目之电商用户评论分析:模型训练阶段
Gemini技术窝
自然语言处理人工智能深度学习AIGC机器学习nlplangchain
大家好,今天我们继续探讨如何从零开始构建一个NLP项目,特别是电商用户评论分析中的模型训练阶段。模型训练是NLP项目的核心环节,通过合理的调参和优化,可以显著提升模型性能。本文将详细介绍模型训练的步骤,并展示如何使用LangChain库进行模型训练、调参和优化。文章目录项目的背景和目标模型训练的详细步骤安装依赖包流程图1.准备数据2.定义模型3.训练模型4.评估模型5.调参与优化常见错误和注意事项
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文