- 深度解析:DETR的多尺度特征融合
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
"深度解析:DETR的多尺度特征融合"作者:禅与计算机程序设计艺术1.背景介绍1.1目标检测的挑战与传统方法的局限性目标检测是计算机视觉领域中的一个基本任务,其目标是识别图像或视频中所有感兴趣的目标,并确定它们的位置和类别。传统的目标检测方法,如FasterR-CNN和YOLO,通常依赖于预定义的锚框或候选区域来生成目标proposals。然而,这些方法存在一些固有的局限性:人工先验知识:锚框的设
- 06 - gldas水文模型数据处理 - 下载、matlab读取
咋(za)说
论文笔记笔记经验分享
gldas水文模型数据处理-下载、matlab读取0.引言1.GLDAS水文数据介绍2.GLDAS数据下载3.GLDAS数据读取的matlab程序0.引言 根据水量平衡方程,陆地水储量变化(Δtws\DeltatwsΔtws
- matlab spmd,matlab并行计算命令
其实我是老莫
matlabspmd
1.matlab仿真模型怎么并行计算以单台双核计算机为例。首先打开MATLAB命令窗口,输入matlabpoolopen就OK了。这样,就相当于将一台计算机的两个核心,当做两台机器用啦。接下来是编程序实现的方法。MATLAB并行计算的模式有几种?主要是两种:parfor模式和spmd模式。两种模式的应用都很简单。第一个中,parfor其实就是parallel+for简化而来,顾名思义啊,就是把原来
- PyTorch实现CNN:CIFAR-10图像分类实战教程
吴师兄大模型
PyTorchpytorchcnnCIFAR-10图像分类人工智能python卷积神经网络开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- AI 技术 引入 RTK(实时动态定位)系统,可以实现智能化管理和自动化运行
小赖同学啊
人工智能低空经济人工智能自动化运维
将AI技术引入RTK(实时动态定位)系统,可以实现智能化管理和自动化运行,从而提高系统的精度、效率和可靠性。以下是AI技术在RTK系统中的应用实例:一、AI技术在RTK系统中的应用场景1.整周模糊度快速解算问题:RTK的核心是解算载波相位的整周模糊度,传统方法耗时较长。AI解决方案:使用深度学习模型(如卷积神经网络CNN)预测整周模糊度。通过历史数据训练模型,实现快速解算。实例:某无人机公司使用A
- 基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测
机器学习和优化算法
多头注意力机制深度学习神经网络人工智能机器学习单变量时序预测BiLSTM多头注意力机制
目录1、代码简介2、代码运行结果展示3、代码获取1、代码简介基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测(单输入单输出)1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!2.需要其他算法的都可以定制!注:1️⃣、运行环境要求MATLAB版本为2023b及其以上。【没有我赠送】2️⃣、评价指标包括:R
- 学习总结项目
苏小夕夕
学习人工智能深度学习机器学习
近段时间学习了机器学习、线性回归和softmax回归、多层感知机、卷积神经网络、Pytorch神经网络工具箱、Python数据处理工具箱、图像分类等的知识,学习了利用神经网络实现cifar10的操作、手写图像识别项目以及其对应的实验项目报告总结。项目总结本次项目我使用了VGG19模型、AlexNet模型和已使用的VGG16模型进行对比,在已有的条件下,对代码进行更改是,结果展示中,VGG19模型的
- 深度学习项目十一:mmdetection训练自己的数据集
小啊磊_Vv
深度学习和视觉项目实战目标跟踪人工智能计算机视觉python深度学习
mmdetection训练自己的数据集这里写目录标题mmdetection训练自己的数据集一:环境搭建二:数据集格式转换(yolo转coco格式)yolo数据集格式coco数据集格式yolo转coco数据集格式yolo转coco数据集格式的代码三:训练dataset数据文件配置configs1.在configs/faster_rcnn/faster-rcnn_r101_fpn_1x_coco.py
- 【2020蓝桥杯省赛“蛇形填数“python实现】纯暴力规律求解
自由之翼explore
蓝桥杯python职场和发展算法
原题如下在网上找的python解答都让我云里雾里的,无奈自己太笨,于是乎开始寻找这个问题的简单规律,最后倒确实找到了:(我先用MatLab生成了一个蛇形矩阵,这段代码是在CSDN上找的)%Zigzagscanningn=8;a=zeros(n);%初始化a(1,1)=1;i=1;%行j=1;%列f=0;%标志位1表示行增加列减小k=2;%循环赋值从左上角开始循环while(kn^2)break;e
- 用MATLAB打造浪漫3D粒子心脏:代码解析与动态可视
爱玩三国杀的界徐盛
matlab3d开发语言
一、效果预览本文我们将用MATLAB实现一个令人惊艳的3D动态可视化效果:旋转的粒子心脏悬浮在星空背景中,粉紫色的心形粒子群与不同层次的旋转星辰交相辉映。这个效果结合了三维曲面生成、粒子系统、坐标变换等多项技术,最终呈现出一个充满科技感的动态艺术作品。二、代码解析2.1颜色配置模块col=@(n)repmat([255,158,196]./255,[n,1])+repmat([-39,-81,-5
- 基于支持向量数据描述 (SVDD) 进行多类分类(Matlab代码实现)
荔枝科研社
分类matlab人工智能
个人主页:研学社的博客欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、引言二、SVDD算法原理三、基于SVDD的多类分类方法四、讨论与展望五、结论2运行结果3参考文献4Matlab代码实现1概述使用支持向量数据描述(SVDD)进行多类分类。矩阵代码。基于SVDD的多类分类在此MATLAB脚本中呈现。多类
- 大话机器学习三大门派:监督、无监督与强化学习
安意诚Matrix
机器学习笔记机器学习人工智能
以武侠江湖为隐喻,系统阐述了机器学习的三大范式:监督学习(少林派)凭借标注数据精准建模,擅长图像分类等预测任务;无监督学习(逍遥派)通过数据自组织发现隐藏规律,在生成对抗网络(GAN)等场景大放异彩;强化学习(明教)依托动态环境交互优化策略,驱动AlphaGo、自动驾驶等突破性应用。文章融合技术深度与江湖趣味,既解析了CNN、PCA、Q-learning等核心算法的"武功心法"(数学公式与代码实现
- 基于信息间隙决策理论的碳捕集电厂调度(Matlab代码实现)
砌墙_2301
matlab算法人工智能
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述基于信息间隙决策理论(IGDT)的碳捕集电厂调度研究综述一、信息间隙决策理论(IGDT)的定义与核心原理二、碳捕集电厂调度的主要研究方向与挑战三、IGDT在碳捕集电厂调度中的模型框架四、现有调度方法的局限性及IGDT的改进五、实证研究案例分析六、总结与
- 深度学习在SSVEP信号分类中的应用分析
自由的晚风
深度学习分类人工智能
目录前言1.SSVEP信号分类的处理流程2.模型输入和数据预处理3.模型结构设计3.1卷积神经网络(CNN)3.2长短期记忆网络(LSTM)4.训练方法与激活函数5.性能评估与挑战6.未来方向前言随着脑机接口(BCI)技术的发展,SSVEP(稳态视觉诱发电位)因其高信息传输速率和短训练时间而成为最受欢迎的BCI范式之一。近年来,深度学习方法在SSVEP信号分类中取得了显著的成果。本文通过对31个深
- PSPNet在图像超分辨率中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PSPNet在图像超分辨率中的应用1.背景介绍图像超分辨率(ImageSuper-Resolution,ISR)是计算机视觉领域的一个重要研究方向,旨在从低分辨率图像中重建高分辨率图像。传统的ISR方法主要基于插值算法,如双线性插值、双三次插值等,但这些方法往往无法恢复图像的高频细节信息。近年来,随着深度学习的发展,基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)的
- 基于BMO磁性细菌优化的WSN网络最优节点部署算法matlab仿真
软件算法开发
MATLAB程序开发#网络仿真matlabBMO磁性细菌优化WSN网络最优节点部署
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述无线传感器网络(WirelessSensorNetwork,WSN)由大量分布式传感器节点组成,用于监测物理或环境状况。节点部署是WSN的关键问题,合理的部署可以提高网络的覆盖范围、连通性和能量效率。磁性细菌是一类能够感知地球磁场并沿磁场方向游动的微生物。在BMO算法中,模拟磁性细菌的这种趋磁
- 基于文本特征的微博谣言检测
机器懒得学习
人工智能大数据图像处理计算机视觉
随着社交媒体的普及,微博等平台成为了信息传播的重要渠道。然而,虚假信息和谣言的传播也带来了严重的社会问题。因此,自动化的谣言检测技术变得尤为重要。本文将介绍如何基于文本特征,使用深度学习模型(如LSTM、CNN)和传统机器学习模型(如SVM)来实现微博谣言检测,并对这些模型的性能进行比较。完整项目地址:基于文本特征的微博谣言检测1.项目概述本项目旨在通过分析微博文本内容,自动检测其中的谣言。系统通
- MATLAB控制函数测试要点剖析
蚂蚁质量
其他matlab深度学习
一、功能准确性检验基础功能核验针对常用控制函数,像用于传递函数建模的tf、构建状态空间模型的ss,以及开展阶跃响应分析的step等,必须确认其能精准执行基础操作。以tf函数为例,在输入分子与分母系数后,理应生成准确无误的传递函数模型;而运用step函数时,则应能够精准计算并绘制出系统的阶跃响应曲线,如实反映系统对阶跃输入的动态响应过程。复杂功能测试对于高级控制函数,例如线性二次调节器lqr、模型预
- 在MATLAB环境中,对矩阵拼接(Matrix Concatenation)的测试
蚂蚁质量
软件测试matlab矩阵
在MATLAB环境中,对矩阵拼接(MatrixConcatenation)的正确性与鲁棒性开展测试时,需要依据不同的拼接场景精心设计测试用例,全面验证矩阵维度、数据顺序、边界条件以及异常处理等关键方面。以下是详尽的测试方法与具体示例:基础功能测试(1)水平拼接([A,B]或horzcat)测试目的:确认在列方向进行拼接后,所得矩阵的尺寸是否准确无误,以及数据排列顺序是否符合预期。测试代码:matl
- Pytorch 第九回:卷积神经网络——ResNet模型
Start_Present
pytorchcnnpython分类深度学习
Pytorch第九回:卷积神经网络——ResNet模型本次开启深度学习第九回,基于Pytorch的ResNet卷积神经网络模型。这是分享的第四个卷积神经网络模型。该模型是基于解决因网络加深而出现的梯度消失和网络退化而进行设计的。接下来给大家分享具体思路。本次学习,借助的平台是PyCharm2024.1.3,python版本3.11numpy版本是1.26.4,pytorch版本2.0.0+cu11
- 基于CNN-BIGRU-Attention模型的功率预测(模型详解及代码复现)
清风AI
深度学习算法详解及代码复现深度学习人工智能算法机器学习计算机视觉cnn神经网络
整体架构基于CNN-BiGRU-Attention模型的功率预测模型是一种融合了卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(Attention)的深度学习架构。这种混合模型旨在充分利用CNN的局部特征提取能力、BiGRU的长序列处理能力以及Attention机制的关键特征突出能力,从而提高功率预测的准确性和可靠性。模型的整体架构主要包括以下几个关键组件:输入层:设计的输入特
- 使用MATLAB保存视频每一帧的图像
水深00安东尼
Matlabmatlab音视频开发语言
clear;clc;%chooseavideofile[filename,pathname]=uigetfile('*.mp4','chooseavideofile','video.mp4','Multiselect','off');%选择名称为video.mp4的视频获取文件名称和存储路径fprintf('filename=%s\npathname=%s\n\n',filename,pathna
- 深入探索Deeplearning4j(DL4J):Java深度学习的全面指南
软件职业规划
java深度学习开发语言
一、DL4J框架概述Deeplearning4j(DL4J)是一个开源的深度学习框架,专为Java和Scala设计,运行在Java虚拟机(JVM)上。它由Skymind公司开发并维护,旨在将深度学习技术应用于大规模商业应用。DL4J支持多种深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。自2014年首次发布以来,DL4J已经成为Java深度学习领域的
- LAMMPS非平衡分子动力学:纳米线热导率计算教程
uote_e
算法数据库matlab
LAMMPS非平衡分子动力学:纳米线热导率计算教程概述本教程旨在介绍如何使用LAMMPS(Large-scaleAtomic/MolecularMassivelyParallelSimulator)软件进行非平衡分子动力学模拟,计算纳米线的热导率。我们将使用Matlab编写一个代码循环,以计算不同温度和尺寸下的热导率。引言纳米线的热导率是研究纳米尺度热传导行为中的重要参数。通过模拟和计算,我们可以
- LAMMPS非平衡分子动力学:纳米线热导率计算与Matlab代码
悠悠烟雨
matlab开发语言Matlab
LAMMPS非平衡分子动力学:纳米线热导率计算与Matlab代码在这篇文章中,我们将介绍如何使用LAMMPS(Large-scaleAtomic/MolecularMassivelyParallelSimulator)软件进行非平衡分子动力学模拟,以计算纳米线的热导率。同时,我们将提供相应的Matlab代码,以便循环计算不同温度和尺寸的纳米线热导率。LAMMPS是一种常用的分子动力学模拟软件,广泛
- LAMMPS体系轨迹分析系列:MATLAB计算温度
独行侠影
matlab开发语言
LAMMPS体系轨迹分析系列:MATLAB计算温度在分子动力学模拟中,LAMMPS是一个常用的开源软件包,可以用于模拟原子、分子以及其他粒子的动力学行为。对于通过LAMMPS模拟得到的轨迹数据,我们经常需要进行一些分析来了解体系的性质。本文将介绍如何使用MATLAB计算LAMMPS体系的温度,并提供相应的源代码。LAMMPS轨迹数据的读取首先,我们需要将LAMMPS生成的轨迹数据导入到MATLAB
- matlab 设置网格线为虚线
phymat.nico
数理方法
gridon;set(gca,'GridLineStyle',':','GridColor','k','GridAlpha',1);https://blog.csdn.net/cursethegod/article/details/80359738
- 【无人机三维路径规划】基于粒子群算法无人机山地三维路径规划含Matlab源码
天天Matlab科研工作室
Matlab各类代码matlab
1简介1无人机路径规划环境建模本文研究在已知环境下的无人机的全局路径规划,建立模拟城市环境的三维高程数字地图模型。考虑无人机飞行安全裕度后用圆柱体模拟建筑物,用半球体模拟其他树木等障碍及禁飞区,其三维高程数学模型表示为[10,10]:2适应度函数在采用粒子群算法进行路径规划时,适应度函数用以评价生成路径的优劣程度,也是算法种群迭代进化的依据,适应度函数的优劣决定着算法执行的效率与质量。为了更好地进
- MATLAB 坐标轴以及plot的使用与相关设置
持~月
matlab
使用matlab的绘图函数plot绘图时系统默认设置了一些属性,例如坐标轴字号大小等并根据情况自动设置坐标轴显示的上下限,这些属性可以通过函数灵活改动。1.设置坐标轴labelx=1:100;y=x;xlabel('时间(s)','FontSize',16);ylabel('压力(pa)','FontSize',16);gridon;%开启网格holdon;%保留绘图title('y=x','Fo
- 定位方法与程序讲解(专栏目录,更新中···)
MATLAB卡尔曼
MATLAB定位程序与详解matlab定位定位原理定位与导航
文章目录MATLAB定位程序与详解专栏定位技术的分类1.GPS类2.INS类/累计计算类3.TDOA4.TOA5AOA6.RSSI7.指纹8.视觉匹配定位方法的应用1.全球定位系统(GPS)2.地面基站定位3.蓝牙定位4.RFID定位5.惯性导航系统(INS)6.超宽带(UWB)定位7.无线局域网(WLAN)定位8.视觉定位9.声波定位组合导航初步MATLAB定位程序与详解专栏链接如下:https
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR