Python数据分析23种Pandas核心操作方法总结

Pandas 是一个 Python 软件库,它提供了大量能使我们快速便捷地处理数据的函数和方法。一般而言,Pandas 是使 Python 成为强大而高效的数据分析环境的重要因素之一。

Pandas 是基于 NumPy 构建的库,在数据处理方面可以把它理解为 NumPy 加强版,同时 Pandas 也是一项开源项目。它基于 Cython,因此读取与处理数据非常快,并且还能轻松处理浮点数据中的缺失数据(表示为 NaN)以及非浮点数据。

本文中,基本数据集操作主要介绍了 CSV 与 Excel 的读写方法,基本数据处理主要介绍了缺失值及特征抽取,最后的 DataFrame 操作则主要介绍了函数和排序等方法。

基本数据集操作

1.读取 CSV 格式的数据集

pd.DataFrame.from_csv(“csv_file”)

或者:

pd.read_csv(“csv_file”)

2.读取 Excel 数据集

pd.read_excel("excel_file")

3.将 DataFrame 直接写入 CSV 文件

如下采用逗号作为分隔符,且不带索引:

df.to_csv("data.csv", sep=",", index=False)

4.基本的数据集特征信息

df.info()

5.基本的数据集统计信息

print(df.describe())

6.Print data frame in a table

将 DataFrame 输出到一张表:

print(tabulate(print_table, headers=headers))

当「print_table」是一个列表,其中列表元素还是新的列表,「headers」为表头字符串组成的列表。

7.列出所有列的名字

df.columns

基本数据处理

8.删除缺失数据

df.dropna(axis=0, how='any')

返回一个 DataFrame,其中删除了包含任何 NaN 值的给定轴,选择 how=「all」会删除所有元素都是 NaN 的给定轴。

9.替换缺失数据

df.replace(to_replace=None, value=None)

使用 value 值代替 DataFrame 中的 to_replace 值,其中 value 和 to_replace 都需要我们赋予不同的值。

10.检查空值 NaN

pd.isnull(object)

检查缺失值,即数值数组中的 NaN 和目标数组中的 None/NaN。

11.删除特征

df.drop('feature_variable_name', axis=1)

axis 选择 0 表示行,选择表示列。

12.将目标类型转换为浮点型

pd.to_numeric(df["feature_name"], errors='coerce')

将目标类型转化为数值从而进一步执行计算,在这个案例中为字符串。

13.将 DataFrame 转换为 NumPy 数组

df.as_matrix()

14.取 DataFrame 的前面「n」行

df.head(n)

15.通过特征名取数据

df.loc[feature_name]

DataFrame 操作

16.对 DataFrame 使用函数

该函数将令 DataFrame 中「height」行的所有值乘上 2:

df["height"].apply(*lambda* height: 2 * height)

或:

def multiply(x): return x * 2df["height"].apply(multiply)

17.重命名行

下面代码会重命名 DataFrame 的第三行为「size」:

df.rename(columns = {df.columns[2]:'size'}, inplace=True)

18.取某一行的唯一实体

下面代码将取「name」行的唯一实体:

df["name"].unique()

19.访问子 DataFrame

以下代码将从 DataFrame 中抽取选定了的行「name」和「size」:

new_df = df[["name", "size"]]

20.总结数据信息

# Sum of values in a data frame
df.sum()
# Lowest value of a data frame
df.min()
# Highest value
df.max()
# Index of the lowest value
df.idxmin()
# Index of the highest value
df.idxmax()
# Statistical summary of the data frame, with quartiles, median, etc.
df.describe()
# Average values
df.mean()
# Median values
df.median()
# Correlation between columns
df.corr()
# To get these values for only one column, just select it like this#
df["size"].median()

21.给数据排序

df.sort_values(ascending = False)

22.布尔型索引

以下代码将过滤名为「size」的行,并仅显示值等于 5 的行:

df[df["size"] == 5]

23.选定特定的值

以下代码将选定「size」列、第一行的值:

df.loc([0], ['size'])

以上就是Python数据分析23种Pandas核心操作方法总结的详细内容,更多关于Python Pandas数据分析的资料请关注脚本之家其它相关文章!

你可能感兴趣的:(Python数据分析23种Pandas核心操作方法总结)