当开发人员在 Dynatrace 中查看这些请求时,将无法再看到超时后正在进行的 API 调用。 该过程在后台进行渲染,但 Dynatrace 看到返回给客户端的响应并停止记录,在这种情况下,如果能了解它正在做的事情需要这么长时间,对分析问题会更有帮助。
我们可以引入一个 Angular HTTP_INTERCEPTOR 来超时等待已久的网络请求,从而确保在服务器端引导的应用程序具有更短的生命周期。 换句话说:所以 SSR 渲染不会因为等待来自网络的缓慢 API 响应而 挂起
。 但是,这可能需要在应用程序代码甚至 SSR 代码中添加额外的逻辑,以便在 SSR 响应中不会返回此类格式错误的渲染(基于不完整的数据)。 在这种情况下,最好回退到没有缓存标头的 CSR 应用程序,而不是允许格式错误的渲染 html 作为响应发送(并且可能由 CDN 缓存)。
一个例子。
在 app.module.ts 里的代码:
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { HttpClientModule, HTTP_INTERCEPTORS } from '@angular/common/http';
import { RequestTimeoutHttpInterceptor, DEFAULT_TIMEOUT } from './interceptors';
import { AppComponent } from './app.component';
@NgModule({
imports: [
BrowserModule,
HttpClientModule,
],
declarations: [
AppComponent,
],
providers: [
{ provide: HTTP_INTERCEPTORS, useClass: RequestTimeoutHttpInterceptor, multi: true },
{ provide: DEFAULT_TIMEOUT, useValue: 5000 },
],
bootstrap: [AppComponent]
})
export class AppModule { }
interceptor 的实现:
import { Injectable, InjectionToken, Inject } from '@angular/core';
import { HttpInterceptor, HttpHandler, HttpRequest } from '@angular/common/http';
import { empty, TimeoutError } from 'rxjs';
import { timeout, catchError } from 'rxjs/operators';
export const DEFAULT_TIMEOUT = new InjectionToken('defaultTimeout');
@Injectable({
providedIn: 'root'
})
export class RequestTimeoutHttpInterceptor implements HttpInterceptor {
constructor(
@Inject(DEFAULT_TIMEOUT) protected defaultTimeout: number,
) { }
intercept(req: HttpRequest, next: HttpHandler) {
const modified = req.clone({
setHeaders: { 'X-Request-Timeout': `${this.defaultTimeout}` }
});
return next.handle(modified).pipe(
timeout(this.defaultTimeout),
catchError(err => {
if (err instanceof TimeoutError)
console.error('Timeout has occurred', req.url);
return empty();
})
);
}
}
这里使用了 rxjs 的 timeout 操作符。如果在指定的时间间隔之内没有 emit 值,则会抛出 error.
看下面这个例子:
// RxJS v6+
import { of } from 'rxjs';
import { concatMap, timeout, catchError, delay } from 'rxjs/operators';
// simulate request
function makeRequest(timeToDelay) {
return of('Request Complete!').pipe(delay(timeToDelay));
}
of(4000, 3000, 2000)
.pipe(
concatMap(duration =>
makeRequest(duration).pipe(
timeout(2500),
catchError(error => of(`Request timed out after: ${duration}`))
)
)
)
/*
* "Request timed out after: 4000"
* "Request timed out after: 3000"
* "Request Complete!"
*/
.subscribe(val => console.log(val));
在这段代码里,我们首先使用 delay
操作符,在 makeRequest 函数里指定了一个时间间隔,来模拟函数调用的延迟。
然后将 makeRequest 返回的 Observable,添加了一个 timeout(2500) 的操作符,意思是 2.5 秒之内,如果该 Observable 没有发出值,即进入 CatchError 的处理逻辑内。
数据源头有三个值,4000,3000 和 2000,其中只有最后一个值小于 2500,因此能在超时时间间隔之内完成函数调用。其他两个值都会导致超时,从而进入 catchError 的数据打印。