那些精贵的3D视觉系统学习资源总结(附书籍、网址与视频教程)

点击上方“3DCVer”,选择“星标”

干货第一时间送达

之前我们总结了一篇关于3D视觉系统学习路线——《吐血整理|3D视觉系统化学习路线》 ,本文重点是对于各个模块的一些资料整理,如有不完善之处,还请各位补充。

(一)基础操作

Linux

学习网站

  • Linux中国:https://linux.cn/

  • 鸟哥的linux私房菜:http://linux.vbird.org/

  • Linux公社:
    https://www.linuxidc.com/


学习书籍

  • 《鸟哥的Linux私房菜》

  • 《Linux命令行与shell脚本编程大全》

  • 《Linux Shell脚本攻略》

  • 《Linux命令行大全》

  • 《Linux就该这么学》

  • 《UNIX高级编程》

在公众号【3DCVer】后台回复“Linux”,即可获取完整PDF资料。


Vim

学习网站

  • OpenVim:

https://link.zhihu.com/?target=http%3A//www.openvim.com/tutorial.html

  • Vim Adventures:

https://link.zhihu.com/?target=http%3A//vim-adventures.com/

  • Vim详细教程:

https://zhuanlan.zhihu.com/p/68111471

  • Interactive Vim tutorial:

https://link.zhihu.com/?target=http%3A//www.openvim.com/

  • 最详细的Vim编辑器指南:

https://www.shiyanlou.com/questions/2721/

  • 简明Vim教程:

https://link.zhihu.com/?target=http%3A//coolshell.cn/articles/5426.html

  • Vim学习资源整理:

https://link.zhihu.com/?target=https%3A//github.com/vim-china/hello-vim


学习书籍

  • 《Mastering Vim》

  • 《Modern Vim》

  • 《Mastering Vim Quickly》


Git学习资源

  • Git官方文档:

https://docs.gitlab.com/ee/README.html

  • Git-book:

https://git-scm.com/book/zh/v2

  • Github超详细的Git学习资料:

https://link.zhihu.com/?target=https%3A//github.com/xirong/my-git

  • Think like Git:

http://think-like-a-git.net/

  • Atlassian Git Tutorial:

https://link.zhihu.com/?target=https%3A//www.atlassian.com/git/tutorials

  • Git Workflows and Tutorials:

原文:

https://www.atlassian.com/git/tutorials/comparing-workflows

译文:

https://github.com/xirong/my-git/blob/master/git-workflow-tutorial.md

  • 版本管理工具介绍--Git篇:

https://link.zhihu.com/?target=http%3A//www.imooc.com/learn/208

  • 廖雪峰Git教程:

https://www.liaoxuefeng.com/wiki/896043488029600


学习书籍

  • 《Git学习指南》

  • 《Pro Git》

  • 《Pro Git》中文版翻译:

https://bingohuang.gitbooks.io/progit2/content/

  • 《Git版本控制管理》

在公众号【3DCVer】,后台回复“Git”,即可获取完整PDF资料。


Shell

学习资源

  • Shell在线速查表:

        https://devhints.io/bash

  • Bash Guide for Beginners:

  • https://link.zhihu.com/?target=http%3A//www.tldp.org/LDP/Bash-Beginners-Guide/html/

  • Advanced Bash-Scripting Guide:

https://link.zhihu.com/?target=http%3A//www.tldp.org/LDP/abs/html/

学习书籍

  • Bash Notes For Professionals

  • 《linux shell脚本攻略》

  • 《LINUX与UNIX Shell编程指南》

在公众号【3DCVer】后台回复“Shell”,即可获取完整PDF资料。

学习视频

  • https://link.zhihu.com/?target=https%3A//www.youtube.com/playlist%3Flist%3DPLdfA2CrAqQ5kB8iSbm5FB1ADVdBeOzVqZ

GDB

  • GDB调试入门指南:

https://zhuanlan.zhihu.com/p/74897601

  • GDB Documentation:

http://www.gnu.org/software/gdb/documentation/


CMake

学习资源

  • Cmake-tutoria:

https://cmake.org/cmake-tutorial/

  • Learning-cmake:

https://github.com/Akagi201/learning-cmake

  • awesome-cmake(公司常用的培训资料):

https://github.com/onqtam/awesome-cmake


(二)数学基础

1. 微分几何

2. 拓扑理论

3. 随机算法

4. 计算方法

5. 多视图几何

6. 图像处理基础算法

7. 复变函数

8. 非线性优化

9. 数学分析

10. 数值分析

11. 矩阵论

12. 离散数学

13. 最优化理论

14. 概率论与数理统计

15. 泛函分析

在公众号【3DCVer】后台回复“数学基础”,即可获取完整PDF资料。

(三)数据结构与算法

学习书籍

1. 剑指offer

2. 编程之法

3. 编程之美

4. 程序员面试宝典

5. 算法导论

6. 图解数据结构:使用C++(黄皮书)

在公众号【3DCVer】后台回复“数据结构与算法”,即可获取完整PDF资料。


学习视频

  • 清华大学邓俊辉:

https://www.bilibili.com/video/av49361421?from=search&seid=17039136986597710308

  • 小甲鱼:

https://www.bilibili.com/video/av29175690?from=search&seid=17039136986597710308

  • 剑指offer数据结构与算法:

https://www.bilibili.com/video/av64288683?from=search&seid=17039136986597710308

  • 数据结构与算法C++实现:

https://www.bilibili.com/video/av31763085?from=search&seid=17039136986597710308

(四)编程语言

  • C++

  • C++ Primer

  • C++ Primer Plus

  • 深度探索C++对象模型

  • Effective C++

  • More Effective C++ 35个改善编程与设计的有效方法

  • C++标准库

在公众号【3DCVer】后台回复“C++”,即可获取完整PDF资料。

Python

  • Python编程从入门到实践

  • Python高级编程

  • Python高性能编程

  • Python核心编程

在公众号【3DCVer】后台回复“Python”,即可获取完整PDF资料。

C

  • C语言程序设计

  • C Primer Plus

  • C和指针

  • C语言接口与实现

  • C/C++深层探索

  • Linux C编程一站式学习

  • C陷阱与缺陷

  • C语言参考手册

在公众号【3DCVer】后台回复“C语言”,即可获取完整PDF资料。

ROS

  • 机器人ROS开发实践(胡春旭)

  • ROS机器人编程:原理与应用

  • ROS机器人开发应用案例分析

在公众号【3DCVer】后台回复“ROS”,即可获取完整PDF资料。

(五)深度学习

学习书籍

1、《Deep Learning》(深度学习花书,Ian Goodfellow,Yoshua Bengio著)

2、《深度学习之TensorFlow 入门、原理与进阶实战》

3、《深度学习之TensorFlow工程化项目实战》

4、《动手学深度学习》

在公众号【3DCVer】后台回复“深度学习”,即可获取完整PDF资料。


学习资源

  • 深度学习500问:

https://github.com/scutan90/DeepLearning-500-questions

  • awesome-deep-learning:

https://github.com/ChristosChristofidis/awesome-deep-learning

  • awesome-deep-learning-papers:

https://github.com/terryum/awesome-deep-learning-papers

  • Deep-Learning-Papers-Reading-Roadmap:

https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap

  • MIT-deep-learning:

https://github.com/lexfridman/mit-deep-learning

  • MIT Deep Learning Book:

https://github.com/janishar/mit-deep-learning-book-pdf

  • Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials:

https://github.com/TarrySingh/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials

学习视频

1、吴恩达深度学习工程师全套课程(网易云课堂)

https://mooc.study.163.com/smartSpec/detail/1001319001.htm

2、斯坦福大学李飞飞

cs231n:

http://cs231n.stanford.edu/

3、李宏毅深度学习视频教程

https://www.bilibili.com/video/av48285039?from=search&seid=18275935807221968201

4、动手学深度学习(李沐)

http://zh.d2l.ai/chapter_preface/preface.html

5、深度学习框架Tensorflow学习与应用

https://www.bilibili.com/video/av20542427?from=search&seid=15215014902897800289


深度学习进阶知识

1、数据增强相关知识

数据增强的一些开源项目:

https://github.com/aleju/imgaug

https://github.com/mdbloice/Augmentor

https://github.com/google-research/uda

谷歌论文:

https://arxiv.org/abs/1909.13719

2、目标检测网络的一些总结内容

Github链接:

https://github.com/hoya012/deep_learning_object_detection

Github链接:

https://github.com/abhineet123/Deep-Learning-for-Tracking-and-Detection

3、语义分割相关

https://link.zhihu.com/?target=https%3A//github.com/mrgloom/awesome-semantic-segmentation

Github链接:

https://github.com/mrgloom/awesome-semantic-segmentation

4、图像检索

Github链接:

https://github.com/zhangqizky/awesome-cbir-papers

https://github.com/willard-yuan/awesome-cbir-papers

5、图像分类

https://github.com/zhangqizky/Image_Classification_with_5_methods

6VAE相关知识点

Github链接:

https://github.com/matthewvowels1/Awesome-VAEs

7、人体姿态估计

Github链接:

https://github.com/wangzheallen/awesome-human-pose-estimation

8、目标跟踪

Github链接:

https://github.com/czla/daily-paper-visual-tracking

多目标跟踪:

https://github.com/SpyderXu/multi-object-tracking-paper-list

9、异常检测

Github链接:

https://github.com/yzhao062/anomaly-detection-resources

10、活体检测

Github链接:

https://github.com/SoftwareGift/FeatherNets_Face-Anti-spoofing-Attack-Detection-Challenge-CVPR2019

11、人群计数

Github链接:

https://github.com/gjy3035/Awesome-Crowd-Counting

12、模型的压缩、加速和修建

模型的压缩和加速

Github链接:

https://github.com/memoiry/Awesome-model-compression-and-acceleration

https://github.com/cedrickchee/awesome-ml-model-compression

模型的修建:

Github链接:

https://github.com/he-y/Awesome-Pruning

13、行为识别和视频理解

Github链接:

https://github.com/jinwchoi/awesome-action-recognition

14、GAN相关资料

Github链接:

https://github.com/zhangqianhui/AdversarialNetsPapers

https://github.com/nightrome/really-awesome-gan

https://github.com/hindupuravinash/the-gan-zoo

https://github.com/eriklindernoren/Keras-GAN

15、图像和视频超分辨率

图像超分辨率Github链接:

https://github.com/ChaofWang/Awesome-Super-Resolution

https://github.com/YapengTian/Single-Image-Super-Resolution

https://github.com/ptkin/Awesome-Super-Resolution

视频超分辨率链接:

https://github.com/LoSealL/VideoSuperResolution

16、人脸landmark3D

Github链接:

https://github.com/mrgloom/Face-landmarks-detection-benchmark

https://github.com/D-X-Y/landmark-detection

https://github.com/ChanChiChoi/awesome-Face_Recognition

17、面部表情识别

Github链接:

https://github.com/amusi/Deep-Learning-Interview-Book/blob/master/docs/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0.md

18、场景识别

Github链接:

https://github.com/CSAILVision/places365

https://github.com/chenyuntc/scene-baseline

https://github.com/foamliu/Scene-Classification

19、深度学习在推荐系统中的应用

Github链接:

https://github.com/robi56/Deep-Learning-for-Recommendation-Systems

20、强化学习资料

Github链接:

https://github.com/wwxFromTju/awesome-reinforcement-learning-zh


(六)AutoML

框架

Autokeras:

https://github.com/keras-team/autokeras

学习资源

Awesome-AutoML-papers(超全):

https://github.com/hibayesian/awesome-automl-papers

(七)深度学习框架

Tensorflow

Tensorflow中文官方文档:

https://github.com/jikexueyuanwiki/tensorflow-zh

Tensorflow2.0 tutorials:

https://github.com/czy36mengfei/tensorflow2_tutorials_chinese

awesome-tensorflow:

https://github.com/jtoy/awesome-tensorflow

图解Tensorflow源码:

https://github.com/yao62995/tensorflow

Caffe

caffe2_cpp_tutorial:

https://github.com/leonardvandriel/caffe2_cpp_tutorial

Caffe使用教程:

https://github.com/shicai/Caffe_Manual

Awesome-Caffe:

https://github.com/MichaelXin/Awesome-Caffe

Keras

Keras中文文档:

https://keras.io/zh/

Pytorch

Pytorch-tutorial:

https://github.com/yunjey/pytorch-tutorial

pytorch-handbook:

https://github.com/zergtant/pytorch-handbook

Awesome-pytorch-list:

https://github.com/bharathgs/Awesome-pytorch-list

MXNet

Tutorial:

https://mxnet.incubator.apache.org/api

深度学习网络可视化工具

Netron:

https://github.com/lutzroeder/netron

NN-SVG:

https://github.com/zfrenchee

PlotNeuralNet:

https://github.com/HarisIqbal88/PlotNeuralNet

ConvNetDraw:

https://cbovar.github.io/ConvNetDraw/

Draw_Convnet:

https://github.com/gwding/draw_convnet

Netscope:

https://link.zhihu.com/?target=https%3A//github.com/ethereon/netscope


(八)机器学习

学习书籍

机器学习(周志华)

统计学习方法(李航)

PRML模式识别与机器学习(马春鹏)

机器学习实战

机器学习系统设计

分布式机器学习:算法、理论与实践

机器学习中的数学

Machine Learning - A Probabilistic Perspective

百面机器学习

美团机器学习实践

在公众号【3DCVer】后台回复“机器学习”,即可获取完整PDF资料。


学习资源

  • AILearning:

https://github.com/apachecn/AiLearning

  • awesome-machine-learning:

https://github.com/josephmisiti/awesome-machine-learning

  • awesome-machine-learning:

https://github.com/jobbole/awesome-machine-learning-cn

  • machine-learning-for-software-engineers:

https://github.com/ZuzooVn/machine-learning-for-software-engineers

  • Machine Learning & Deep Learning Tutorials:

https://github.com/ujjwalkarn/Machine-Learning-Tutorials

  • homemade-machine-learning:

https://github.com/trekhleb/homemade-machine-learning

  • 3D-Machine-Learning(非常有价值):

https://github.com/timzhang642/3D-Machine-Learning

学习视频

1、吴恩达CS229: Machine Learning (机器学习视频)

视频链接:

http://cs229.stanford.edu/

2、斯坦福大学机器学习视频

视频链接:

https://www.coursera.org/learn/machine-learning

3、李宏毅机器学习视频

视频下载链接:

https://www.bilibili.com/video/av59538266(这是B站上的在线视频)

百度云盘:

链接: https://pan.baidu.com/s/1HdVdx52MZ-FF5dSWpAOfeA 

提取码: vjhy

4、Google机器学习

Github链接:

https://github.com/yuanxiaosc/Google-Machine-learning-crash-course


(九)计算机视觉

学习书籍

  • Computer Vision Models,Learning and Inference

  • Computer Vision Algorithms and Applications

  • Machine Vision Algorithms and Applications

  • Linear Algebra for Computer Vision

  • An Invitation to 3-D Vision: From Images to Geometric Models

  • 计算机视觉中的多视图几何

  • Computer Vision for Visual Effects

  • Mastering OpenCV with Practical Computer Vision Projects

  • OpenCV3计算机视觉:Python语言实现

  • Practical OpenCV

  • OpenCV 3.0 Computer Vision with Java

在公众号【3DCVer】后台回复“计算机视觉”,即可获取完整PDF资料。

学习课程

  • 计算机视觉博士课程:

https://github.com/hassony2/useful-computer-vision-phd-resources

  • 81页计算机视觉学习指南:

https://www.pyimagesearch.com/start-here/

  • Deep Learning: Advanced Computer Vision:

https://www.udemy.com/course/advanced-computer-vision/


(十)自动驾驶

学习视频

1、 百度Apollo系列教程

视频链接:

http://bit.baidu.com/subject/index/id/16.html

2、(MIT自动驾驶课程)MIT 6.S094: Deep Learning for Self-Driving Cars

视频链接:

https://selfdrivingcars.mit.edu/

3、国外教程自动驾驶汽车专项课程

课程:

https://www.coursera.org/specializations/self-driving-cars

笔记:

https://github.com/qiaoxu123/Self-Driving-Cars

文档:

https://qiaoxu123.github.io/Self-Driving-Cars/#/

方向汇总

机动车/非机动车/行人的检测、跟踪与捕获

各种车辆特征等结构化信息提取

各类驾驶行为的分析

违章事件的检出,交通数据的采集

车辆/行人检测与跟踪

道路分割与识别

车道线检测

场景分割

场景识别

自动泊车

障碍物的识别

车道偏离报警

交通标志的识别

车载视频雷达(激光、毫米波、超声波)多源信号融合技术

版面分析

文本行/串检测

单字/字符串识别

语义分析

结构化信息提取

AI芯片

深度学习的分布和并行处理系统

论文汇总

1、 单目图像中的3D物体检测

1.YOLO3D

2.SSD-6D

3.3D Bounding Box Estimation Using Deep Learning and Geometry

4.GS3D:An Effcient 3D Object Detection Framework for Autonomous Driving

5.Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image

6.Task-Aware Monocular Depth Estimation for 3D Object Detection

7.M3D-RPN: Monocular 3D Region Proposal Network for Object Detection

8.Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud

9.Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Interp-over-Union Loss

10.Disentangling Monocular 3D Object Detection

11.Shift R-CNN: Deep Monocular 3d Object Detection With Closed-Form Geometric Constraints

12.Monocular 3D Object Detection via Geometric Reasoning on Keypoints

13.Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction

14.Accurate Monocular Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving

15.3D Bounding Boxes for Road Vehicles: A One-Stage, Localization Prioritized Approach using Single Monocular Images

16.Orthographic Feature Transform for Monocular 3D Object Detection

17.Multi-Level Fusion based 3D Object Detection from Monocular Images

18.MonoGRNet:A Geometric Reasoning Network for Monocular 3D Object Localization

19.Mono3D++: Monocular 3D Vehicle Detection with Two-Scale 3D Hypotheses and Task Priors

2、 基于激光雷达点云的3D物体检测

1.VoteNet

2.End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds

3.Deep Hough Voting for 3D Object Detection in Point Clouds

4.STD: Sparse-to-Dense 3D Object Detector for Point Cloud

5.PointPillars: Fast Encoders for Object Detection from Point Clouds

6.PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud

7.PIXOR: Real-time 3D Object Detection from Point Clouds

8.Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on Point Clouds

9.YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud

10.Vehicle Detection from 3D Lidar Using FCN(百度早期工作2016年)

11.Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks

12.RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving

13.BirdNet: a 3D Object Detection Framework from LiDAR information

14.IPOD: Intensive Point-based Object Detector for Point Cloud

15.PIXOR: Real-time 3D Object Detection from Point Clouds

16.DepthCN: Vehicle Detection Using 3D-LIDAR and ConvNet

17.YOLO4D: A ST Approach for RT Multi-object Detection and Classification from LiDAR Point Clouds

18.PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud

19.Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud

20.Voxel-FPN: multi-scale voxel feature aggregation in 3D object detection from point clouds

21.Fast Point RCNN

22.StarNet: Targeted Computation for Object Detection in Point Clouds

23.Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection

24.LaserNet: An Efficient Probabilistic 3D Object Detector for  Autonomous Driving

3、 基于RGB-D图像的3D物体检测

1.Frustum PointNets for 3D Object Detection from RGB-D Data

2.Frustum VoxNet for 3D object detection from RGB-D or Depth images

4、 基于融合方法的3D物体检测(RGB图像+激光雷达/深度图)

1.AVOD

2.A General Pipeline for 3D Detection of Vehicles

3.Adaptive and Azimuth-Aware Fusion Network of Multimodal Local Features for 3D Object Detection

4.Deep Continuous Fusion for Multi-Sensor 3D Object Detection

5.Frustum PointNets for 3D Object Detection from RGB-D Data

6.Joint 3D Proposal Generation and Object Detection from View Aggregation

7.Multi-Task Multi-Sensor Fusion for 3D Object Detection

8.Multi-View 3D Object Detection Network for Autonomous Driving

9.PointFusion:Deep Sensor Fusion for 3D Bounding Box Estimation

10.Pseudo-LiDAR from Visual Depth Estimation:Bridging the Gap in 3D Object Detection for Autonomous Driving

5、 基于双目视觉下的3D物体检测

1.Object-Centric Stereo Matching for 3D Object Detection

2.Triangulation Learning Network: from Monocular to Stereo 3D Object Detection

3.Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

4.Stereo R-CNN based 3D Object Detection for Autonomous Driving

6、单目图像深度图生成

1.Deep Ordinal Regression Network for Monocular Depth Estimation

2.Depth from Videos in the Wild: Unsupervised Monocular Depth Learning from Unknown Cameras

3.Detail Preserving Depth Estimation from a Single Image Using Attention Guided Networks

4.FastDepth: Fast Monocular Depth Estimation on Embedded Systems

5.Single View Stereo Matching

7、单目图像+激光雷达点云深度图生成

1.Sparse and noisy LiDAR completion with RGB guidance and uncertainty

2.Learning Guided Convolutional Network for Depth Completion

3.DFineNet: Ego-Motion Estimation and Depth Refinement from Sparse, Noisy Depth Input with RGB Guidance

8、深度图补全

1.Deep RGB-D Canonical Correlation Analysis For Sparse Depth Completion

2.Sparse and noisy LiDAR completion with RGB guidance and uncertainty

3.Confidence Propagation through CNNs for Guided Sparse Depth Regression

4.Learning Guided Convolutional Network for Depth Completion

5.DFineNet: Ego-Motion Estimation and Depth Refinement from Sparse, Noisy Depth Input with RGB Guidance

6.Depth Completion from Sparse LiDAR Data with Depth-Normal Constraints

(十一)三维重建

学习书籍

1.Computer Vision for Visual Effects

2.Computer Vision Algorithms and Applications


相关论文

1.Rolling Shutter Pose and Ego-motion Estimation using Shape-from-Template(ECCV2018)

2.BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration(ACM)

3.Depth Map Prediction from a Single Image using a Multi-Scale Deep Network

4.3D-R2N2:A Unified Approach for Single and Multi-view 3D Object Reconstruction         5.Pixel2Mesh:Generating 3D Mesh Models form Single RGB Images

6.Mesh R-CNN(FAIR,CVPR2019)

7.Conditional Single-view Shape Generation for Multi-view Stereo Reconstruction

8.R-MVSNet: Recurrent MVSNet for High-resolution Multi-view Stereo Depth Inference

9.StereoDRNet: Dilated Residual Stereo Net(cvpr2019)


一些开源网站

1、MVE

网站链接:

https://www.gcc.tu-darmstadt.de/home/proj/mve/index.en.jsp

2、Bundler

网站链接:

http://www.cs.cornell.edu/~snavely/bundler/

3、VisualSFM

网站链接:

https://link.zhihu.com/?target=http%3A//ccwu.me/vsfm/

4、OpenMVG

网站链接:

https://openmvg.readthedocs.io/en/latest/software/SfM/SfM/

5、ColMap

网站链接:

https://link.zhihu.com/?target=https%3A//demuc.de/colmap/


相关资源网站

1、非常全面的三维重建相关资源列表,涵盖SLAM,SFM,MVS

https://github.com/openMVG/awesome_3DReconstruction_list


(十二)立体视觉

学习书籍

《视觉测量》(张广军版)

《multiview geometry in computer vision》

在公众号【3DCVer】后台回复“立体视觉”,即可获取完整PDF资料。


学习课程

CS231A: Computer Vision, From 3D Reconstruction to Recognition:

http://web.stanford.edu/class/cs231a/


(十三)结构光与三维重建

学习书籍

《光栅投影三维精密测量》

《基于多视图的三维结构重建》


开源项目

  • 3d reconstruction using three step phase shift:

https://github.com/phreax/structured_light

  • A framework for Structured Light based 3D scanning projects:

https://github.com/nikolaseu/neuvision

  • awesome_3DReconstruction_list:

https://github.com/openMVG/awesome_3DReconstruction_list


(十四)SLAM

SLAM大佬网站

1、跟踪SLAM前沿动态论文,更新的很频繁

https://github.com/YiChenCityU/Recent_SLAM_Research

2、很全视觉slam资料大全

https://github.com/tzutalin/awesome-visual-slam

3、开源SLAM列表

https://github.com/OpenSLAM/awesome-SLAM-list

4、很全面的SLAM教程

https://link.zhihu.com/?target=https%3A//github.com/kanster/awesome-slam

5、非常全面的三维重建相关资源列表,涵盖SLAM,SFM,MVS

https://github.com/openMVG/awesome_3DReconstruction_list

6、很全的RGBD SLAM开源方案介绍

https://github.com/electech6/owesome-RGBD-SLAM

7、非常全面的相机总结,包括论文,设备厂商,算法,应用等

https://github.com/uzh-rpg/event-based_vision_resources

8、SLAM 学习与开发经验分享

https://github.com/GeekLiB/Lee-SLAM-source

9、中文注释版ORB-SLAM2

https://github.com/Vincentqyw/ORB-SLAM2-CHINESE

10、语义SLAM相关资料

https://zhuanlan.zhihu.com/p/64825421


SLAM相关的工具和库

基础工具:Eigen、OpenCV、PCL、ROS

后端优化的库:g2o、GTSAM、Ceres solver


SLAM相关开源代码

1、MonoSLAM

Github地址:

https://github.com/hanmekim/SceneLib2

2、PTAM

Github地址:

https://www.robots.ox.ac.uk/~gk/PTAM/

3、ORB-SLAM

Github地址:

http://webdiis.unizar.es/~raulmur/orbslam/

4、LSD-SLAM

Github地址:

https://vision.in.tum.de/research/vslam/lsdslam

5、SVO

Github地址:

https://github.com/OpenSLAM/awesome-SLAM-list

6、DTAM

Github地址:

https://github.com/anuranbaka/OpenDTAM

7、DVO

Github地址:

https://github.com/tum-vision/dvo_slam

8、DSO

Github地址:

https://github.com/JakobEngel/dso

9、RTAB-MAP

Github地址:

https://github.com/introlab/rtabmap

10、RGBD-SLAM-V2

Github地址:

https://github.com/felixendres/rgbdslam_v2

11、Elastic Fusion

Github地址:

https://github.com/mp3guy/ElasticFusion

12、Hector SLAM

Github地址:

https://wiki.ros.org/hector_slam

13、GMapping

Github地址:

https://wiki.ros.org/gmapping

14、OKVIS

Github地址:

https://github.com/ethz-asl/okvis

15、ROVIO

Github地址:

https://github.com/ethz-asl/rovio

16、COSLAM

Github地址:

http://drone.sjtu.edu.cn/dpzou/project/coslam.php

17、DTSLAM

Github地址:https://github.com/plumonito/dtslam

18、REBVO

Github地址:

https://github.com/JuanTarrio/rebvo

SLAM相关数据集

1. Malaga Dataset

2. Tum: Computer Vision Lab: RGB-D

3. KITTI Dataset

4. University of Freiburg: Department of Computer Science

5. MRPT

6. ICDL-NUIM


SLAM学习书籍

  • 概率机器人

  • 视觉SLAM十四讲

  • 计算机视觉中的多视图几何

  • 机器人学中的状态估计

  • Principles of Robot Motion Theory,Algorithms and Implementation

在公众号【3DCVer】后台回复“SLAM学习资料”,获取完整PDF资料。


SLAM学习视频

公开课:

https://www.youtube.com/channel/UCi1TC2fLRvgBQNe-T4dp8Eg

这些资料将同步分享在我们的学习圈「3D视觉技术」星球,更多干货资料也将在星球中补充完善。

上述内容,如有侵犯版权,请联系作者,会自行删文。

交流群

欢迎加入我们公众号读者群一起和同行交流,目前有3D视觉、CV&深度学习SLAM、三维重建、点云后处理、自动驾驶等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。

那些精贵的3D视觉系统学习资源总结(附书籍、网址与视频教程)_第1张图片

知识星球

学习3D视觉核心技术,扫描查看详情,3天内无条件退款

那些精贵的3D视觉系统学习资源总结(附书籍、网址与视频教程)_第2张图片

圈里有高质量教程资料、可答疑解惑、助你高效解决问题

你可能感兴趣的:(编程语言,人工智能,qt5,机器学习,xhtml)