点击上方“3DCVer”,选择“星标”
干货第一时间送达
之前我们总结了一篇关于3D视觉系统学习路线——《吐血整理|3D视觉系统化学习路线》 ,本文重点是对于各个模块的一些资料整理,如有不完善之处,还请各位补充。
Linux中国:https://linux.cn/
鸟哥的linux私房菜:http://linux.vbird.org/
Linux公社:
https://www.linuxidc.com/
《鸟哥的Linux私房菜》
《Linux命令行与shell脚本编程大全》
《Linux Shell脚本攻略》
《Linux命令行大全》
《Linux就该这么学》
《UNIX高级编程》
在公众号【3DCVer】后台回复“Linux”,即可获取完整PDF资料。
OpenVim:
https://link.zhihu.com/?target=http%3A//www.openvim.com/tutorial.html
Vim Adventures:
https://link.zhihu.com/?target=http%3A//vim-adventures.com/
Vim详细教程:
https://zhuanlan.zhihu.com/p/68111471
Interactive Vim tutorial:
https://link.zhihu.com/?target=http%3A//www.openvim.com/
最详细的Vim编辑器指南:
https://www.shiyanlou.com/questions/2721/
简明Vim教程:
https://link.zhihu.com/?target=http%3A//coolshell.cn/articles/5426.html
Vim学习资源整理:
https://link.zhihu.com/?target=https%3A//github.com/vim-china/hello-vim
《Mastering Vim》
《Modern Vim》
《Mastering Vim Quickly》
Git官方文档:
https://docs.gitlab.com/ee/README.html
Git-book:
https://git-scm.com/book/zh/v2
Github超详细的Git学习资料:
https://link.zhihu.com/?target=https%3A//github.com/xirong/my-git
Think like Git:
http://think-like-a-git.net/
Atlassian Git Tutorial:
https://link.zhihu.com/?target=https%3A//www.atlassian.com/git/tutorials
Git Workflows and Tutorials:
原文:
https://www.atlassian.com/git/tutorials/comparing-workflows
译文:
https://github.com/xirong/my-git/blob/master/git-workflow-tutorial.md
版本管理工具介绍--Git篇:
https://link.zhihu.com/?target=http%3A//www.imooc.com/learn/208
廖雪峰Git教程:
https://www.liaoxuefeng.com/wiki/896043488029600
《Git学习指南》
《Pro Git》
《Pro Git》中文版翻译:
https://bingohuang.gitbooks.io/progit2/content/
《Git版本控制管理》
在公众号【3DCVer】,后台回复“Git”,即可获取完整PDF资料。
Shell在线速查表:
https://devhints.io/bash
Bash Guide for Beginners:
https://link.zhihu.com/?target=http%3A//www.tldp.org/LDP/Bash-Beginners-Guide/html/
Advanced Bash-Scripting Guide:
https://link.zhihu.com/?target=http%3A//www.tldp.org/LDP/abs/html/
Bash Notes For Professionals
《linux shell脚本攻略》
《LINUX与UNIX Shell编程指南》
在公众号【3DCVer】后台回复“Shell”,即可获取完整PDF资料。
https://link.zhihu.com/?target=https%3A//www.youtube.com/playlist%3Flist%3DPLdfA2CrAqQ5kB8iSbm5FB1ADVdBeOzVqZ
GDB调试入门指南:
https://zhuanlan.zhihu.com/p/74897601
GDB Documentation:
http://www.gnu.org/software/gdb/documentation/
Cmake-tutoria:
https://cmake.org/cmake-tutorial/
Learning-cmake:
https://github.com/Akagi201/learning-cmake
awesome-cmake(公司常用的培训资料):
https://github.com/onqtam/awesome-cmake
1. 微分几何
2. 拓扑理论
3. 随机算法
4. 计算方法
5. 多视图几何
6. 图像处理基础算法
7. 复变函数
8. 非线性优化
9. 数学分析
10. 数值分析
11. 矩阵论
12. 离散数学
13. 最优化理论
14. 概率论与数理统计
15. 泛函分析
在公众号【3DCVer】后台回复“数学基础”,即可获取完整PDF资料。
1. 剑指offer
2. 编程之法
3. 编程之美
4. 程序员面试宝典
5. 算法导论
6. 图解数据结构:使用C++(黄皮书)
在公众号【3DCVer】后台回复“数据结构与算法”,即可获取完整PDF资料。
清华大学邓俊辉:
https://www.bilibili.com/video/av49361421?from=search&seid=17039136986597710308
小甲鱼:
https://www.bilibili.com/video/av29175690?from=search&seid=17039136986597710308
剑指offer数据结构与算法:
https://www.bilibili.com/video/av64288683?from=search&seid=17039136986597710308
数据结构与算法C++实现:
https://www.bilibili.com/video/av31763085?from=search&seid=17039136986597710308
C++ Primer
C++ Primer Plus
深度探索C++对象模型
Effective C++
More Effective C++ 35个改善编程与设计的有效方法
C++标准库
在公众号【3DCVer】后台回复“C++”,即可获取完整PDF资料。
Python编程从入门到实践
Python高级编程
Python高性能编程
Python核心编程
在公众号【3DCVer】后台回复“Python”,即可获取完整PDF资料。
C语言程序设计
C Primer Plus
C和指针
C语言接口与实现
C/C++深层探索
Linux C编程一站式学习
C陷阱与缺陷
C语言参考手册
在公众号【3DCVer】后台回复“C语言”,即可获取完整PDF资料。
机器人ROS开发实践(胡春旭)
ROS机器人编程:原理与应用
ROS机器人开发应用案例分析
在公众号【3DCVer】后台回复“ROS”,即可获取完整PDF资料。
1、《Deep Learning》(深度学习花书,Ian Goodfellow,Yoshua Bengio著)
2、《深度学习之TensorFlow 入门、原理与进阶实战》
3、《深度学习之TensorFlow工程化项目实战》
4、《动手学深度学习》
在公众号【3DCVer】后台回复“深度学习”,即可获取完整PDF资料。
深度学习500问:
https://github.com/scutan90/DeepLearning-500-questions
awesome-deep-learning:
https://github.com/ChristosChristofidis/awesome-deep-learning
awesome-deep-learning-papers:
https://github.com/terryum/awesome-deep-learning-papers
Deep-Learning-Papers-Reading-Roadmap:
https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap
MIT-deep-learning:
https://github.com/lexfridman/mit-deep-learning
MIT Deep Learning Book:
https://github.com/janishar/mit-deep-learning-book-pdf
Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials:
https://github.com/TarrySingh/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials
1、吴恩达深度学习工程师全套课程(网易云课堂)
https://mooc.study.163.com/smartSpec/detail/1001319001.htm
2、斯坦福大学李飞飞
cs231n:
http://cs231n.stanford.edu/
3、李宏毅深度学习视频教程
https://www.bilibili.com/video/av48285039?from=search&seid=18275935807221968201
4、动手学深度学习(李沐)
http://zh.d2l.ai/chapter_preface/preface.html
5、深度学习框架Tensorflow学习与应用
https://www.bilibili.com/video/av20542427?from=search&seid=15215014902897800289
数据增强的一些开源项目:
https://github.com/aleju/imgaug
https://github.com/mdbloice/Augmentor
https://github.com/google-research/uda
谷歌论文:
https://arxiv.org/abs/1909.13719
Github链接:
https://github.com/hoya012/deep_learning_object_detection
Github链接:
https://github.com/abhineet123/Deep-Learning-for-Tracking-and-Detection
https://link.zhihu.com/?target=https%3A//github.com/mrgloom/awesome-semantic-segmentation
Github链接:
https://github.com/mrgloom/awesome-semantic-segmentation
Github链接:
https://github.com/zhangqizky/awesome-cbir-papers
https://github.com/willard-yuan/awesome-cbir-papers
https://github.com/zhangqizky/Image_Classification_with_5_methods
Github链接:
https://github.com/matthewvowels1/Awesome-VAEs
Github链接:
https://github.com/wangzheallen/awesome-human-pose-estimation
Github链接:
https://github.com/czla/daily-paper-visual-tracking
多目标跟踪:
https://github.com/SpyderXu/multi-object-tracking-paper-list
Github链接:
https://github.com/yzhao062/anomaly-detection-resources
Github链接:
https://github.com/SoftwareGift/FeatherNets_Face-Anti-spoofing-Attack-Detection-Challenge-CVPR2019
Github链接:
https://github.com/gjy3035/Awesome-Crowd-Counting
模型的压缩和加速
Github链接:
https://github.com/memoiry/Awesome-model-compression-and-acceleration
https://github.com/cedrickchee/awesome-ml-model-compression
模型的修建:
Github链接:
https://github.com/he-y/Awesome-Pruning
Github链接:
https://github.com/jinwchoi/awesome-action-recognition
Github链接:
https://github.com/zhangqianhui/AdversarialNetsPapers
https://github.com/nightrome/really-awesome-gan
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/eriklindernoren/Keras-GAN
图像超分辨率Github链接:
https://github.com/ChaofWang/Awesome-Super-Resolution
https://github.com/YapengTian/Single-Image-Super-Resolution
https://github.com/ptkin/Awesome-Super-Resolution
视频超分辨率链接:
https://github.com/LoSealL/VideoSuperResolution
Github链接:
https://github.com/mrgloom/Face-landmarks-detection-benchmark
https://github.com/D-X-Y/landmark-detection
https://github.com/ChanChiChoi/awesome-Face_Recognition
Github链接:
https://github.com/amusi/Deep-Learning-Interview-Book/blob/master/docs/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0.md
Github链接:
https://github.com/CSAILVision/places365
https://github.com/chenyuntc/scene-baseline
https://github.com/foamliu/Scene-Classification
Github链接:
https://github.com/robi56/Deep-Learning-for-Recommendation-Systems
Github链接:
https://github.com/wwxFromTju/awesome-reinforcement-learning-zh
Autokeras:
https://github.com/keras-team/autokeras
Awesome-AutoML-papers(超全):
https://github.com/hibayesian/awesome-automl-papers
Tensorflow中文官方文档:
https://github.com/jikexueyuanwiki/tensorflow-zh
Tensorflow2.0 tutorials:
https://github.com/czy36mengfei/tensorflow2_tutorials_chinese
awesome-tensorflow:
https://github.com/jtoy/awesome-tensorflow
图解Tensorflow源码:
https://github.com/yao62995/tensorflow
caffe2_cpp_tutorial:
https://github.com/leonardvandriel/caffe2_cpp_tutorial
Caffe使用教程:
https://github.com/shicai/Caffe_Manual
Awesome-Caffe:
https://github.com/MichaelXin/Awesome-Caffe
Keras中文文档:
https://keras.io/zh/
Pytorch-tutorial:
https://github.com/yunjey/pytorch-tutorial
pytorch-handbook:
https://github.com/zergtant/pytorch-handbook
Awesome-pytorch-list:
https://github.com/bharathgs/Awesome-pytorch-list
Tutorial:
https://mxnet.incubator.apache.org/api
Netron:
https://github.com/lutzroeder/netron
NN-SVG:
https://github.com/zfrenchee
PlotNeuralNet:
https://github.com/HarisIqbal88/PlotNeuralNet
ConvNetDraw:
https://cbovar.github.io/ConvNetDraw/
Draw_Convnet:
https://github.com/gwding/draw_convnet
Netscope:
https://link.zhihu.com/?target=https%3A//github.com/ethereon/netscope
机器学习(周志华)
统计学习方法(李航)
PRML模式识别与机器学习(马春鹏)
机器学习实战
机器学习系统设计
分布式机器学习:算法、理论与实践
机器学习中的数学
Machine Learning - A Probabilistic Perspective
百面机器学习
美团机器学习实践
在公众号【3DCVer】后台回复“机器学习”,即可获取完整PDF资料。
AILearning:
https://github.com/apachecn/AiLearning
awesome-machine-learning:
https://github.com/josephmisiti/awesome-machine-learning
awesome-machine-learning:
https://github.com/jobbole/awesome-machine-learning-cn
machine-learning-for-software-engineers:
https://github.com/ZuzooVn/machine-learning-for-software-engineers
Machine Learning & Deep Learning Tutorials:
https://github.com/ujjwalkarn/Machine-Learning-Tutorials
homemade-machine-learning:
https://github.com/trekhleb/homemade-machine-learning
3D-Machine-Learning(非常有价值):
https://github.com/timzhang642/3D-Machine-Learning
1、吴恩达CS229: Machine Learning (机器学习视频)
视频链接:
http://cs229.stanford.edu/
2、斯坦福大学机器学习视频
视频链接:
https://www.coursera.org/learn/machine-learning
3、李宏毅机器学习视频
视频下载链接:
https://www.bilibili.com/video/av59538266(这是B站上的在线视频)
百度云盘:
链接: https://pan.baidu.com/s/1HdVdx52MZ-FF5dSWpAOfeA
提取码: vjhy
4、Google机器学习
Github链接:
https://github.com/yuanxiaosc/Google-Machine-learning-crash-course
Computer Vision Models,Learning and Inference
Computer Vision Algorithms and Applications
Machine Vision Algorithms and Applications
Linear Algebra for Computer Vision
An Invitation to 3-D Vision: From Images to Geometric Models
计算机视觉中的多视图几何
Computer Vision for Visual Effects
Mastering OpenCV with Practical Computer Vision Projects
OpenCV3计算机视觉:Python语言实现
Practical OpenCV
OpenCV 3.0 Computer Vision with Java
在公众号【3DCVer】后台回复“计算机视觉”,即可获取完整PDF资料。
计算机视觉博士课程:
https://github.com/hassony2/useful-computer-vision-phd-resources
81页计算机视觉学习指南:
https://www.pyimagesearch.com/start-here/
Deep Learning: Advanced Computer Vision:
https://www.udemy.com/course/advanced-computer-vision/
视频链接:
http://bit.baidu.com/subject/index/id/16.html
视频链接:
https://selfdrivingcars.mit.edu/
课程:
https://www.coursera.org/specializations/self-driving-cars
笔记:
https://github.com/qiaoxu123/Self-Driving-Cars
文档:
https://qiaoxu123.github.io/Self-Driving-Cars/#/
机动车/非机动车/行人的检测、跟踪与捕获
各种车辆特征等结构化信息提取
各类驾驶行为的分析
违章事件的检出,交通数据的采集
车辆/行人检测与跟踪
道路分割与识别
车道线检测
场景分割
场景识别
自动泊车
障碍物的识别
车道偏离报警
交通标志的识别
车载视频雷达(激光、毫米波、超声波)多源信号融合技术
版面分析
文本行/串检测
单字/字符串识别
语义分析
结构化信息提取
AI芯片
深度学习的分布和并行处理系统
1.YOLO3D
2.SSD-6D
3.3D Bounding Box Estimation Using Deep Learning and Geometry
4.GS3D:An Effcient 3D Object Detection Framework for Autonomous Driving
5.Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image
6.Task-Aware Monocular Depth Estimation for 3D Object Detection
7.M3D-RPN: Monocular 3D Region Proposal Network for Object Detection
8.Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud
9.Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Interp-over-Union Loss
10.Disentangling Monocular 3D Object Detection
11.Shift R-CNN: Deep Monocular 3d Object Detection With Closed-Form Geometric Constraints
12.Monocular 3D Object Detection via Geometric Reasoning on Keypoints
13.Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction
14.Accurate Monocular Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving
15.3D Bounding Boxes for Road Vehicles: A One-Stage, Localization Prioritized Approach using Single Monocular Images
16.Orthographic Feature Transform for Monocular 3D Object Detection
17.Multi-Level Fusion based 3D Object Detection from Monocular Images
18.MonoGRNet:A Geometric Reasoning Network for Monocular 3D Object Localization
19.Mono3D++: Monocular 3D Vehicle Detection with Two-Scale 3D Hypotheses and Task Priors
1.VoteNet
2.End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds
3.Deep Hough Voting for 3D Object Detection in Point Clouds
4.STD: Sparse-to-Dense 3D Object Detector for Point Cloud
5.PointPillars: Fast Encoders for Object Detection from Point Clouds
6.PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
7.PIXOR: Real-time 3D Object Detection from Point Clouds
8.Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on Point Clouds
9.YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud
10.Vehicle Detection from 3D Lidar Using FCN(百度早期工作2016年)
11.Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks
12.RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving
13.BirdNet: a 3D Object Detection Framework from LiDAR information
14.IPOD: Intensive Point-based Object Detector for Point Cloud
15.PIXOR: Real-time 3D Object Detection from Point Clouds
16.DepthCN: Vehicle Detection Using 3D-LIDAR and ConvNet
17.YOLO4D: A ST Approach for RT Multi-object Detection and Classification from LiDAR Point Clouds
18.PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
19.Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud
20.Voxel-FPN: multi-scale voxel feature aggregation in 3D object detection from point clouds
21.Fast Point RCNN
22.StarNet: Targeted Computation for Object Detection in Point Clouds
23.Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection
24.LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving
1.Frustum PointNets for 3D Object Detection from RGB-D Data
2.Frustum VoxNet for 3D object detection from RGB-D or Depth images
1.AVOD
2.A General Pipeline for 3D Detection of Vehicles
3.Adaptive and Azimuth-Aware Fusion Network of Multimodal Local Features for 3D Object Detection
4.Deep Continuous Fusion for Multi-Sensor 3D Object Detection
5.Frustum PointNets for 3D Object Detection from RGB-D Data
6.Joint 3D Proposal Generation and Object Detection from View Aggregation
7.Multi-Task Multi-Sensor Fusion for 3D Object Detection
8.Multi-View 3D Object Detection Network for Autonomous Driving
9.PointFusion:Deep Sensor Fusion for 3D Bounding Box Estimation
10.Pseudo-LiDAR from Visual Depth Estimation:Bridging the Gap in 3D Object Detection for Autonomous Driving
1.Object-Centric Stereo Matching for 3D Object Detection
2.Triangulation Learning Network: from Monocular to Stereo 3D Object Detection
3.Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving
4.Stereo R-CNN based 3D Object Detection for Autonomous Driving
1.Deep Ordinal Regression Network for Monocular Depth Estimation
2.Depth from Videos in the Wild: Unsupervised Monocular Depth Learning from Unknown Cameras
3.Detail Preserving Depth Estimation from a Single Image Using Attention Guided Networks
4.FastDepth: Fast Monocular Depth Estimation on Embedded Systems
5.Single View Stereo Matching
1.Sparse and noisy LiDAR completion with RGB guidance and uncertainty
2.Learning Guided Convolutional Network for Depth Completion
3.DFineNet: Ego-Motion Estimation and Depth Refinement from Sparse, Noisy Depth Input with RGB Guidance
1.Deep RGB-D Canonical Correlation Analysis For Sparse Depth Completion
2.Sparse and noisy LiDAR completion with RGB guidance and uncertainty
3.Confidence Propagation through CNNs for Guided Sparse Depth Regression
4.Learning Guided Convolutional Network for Depth Completion
5.DFineNet: Ego-Motion Estimation and Depth Refinement from Sparse, Noisy Depth Input with RGB Guidance
6.Depth Completion from Sparse LiDAR Data with Depth-Normal Constraints
1.Computer Vision for Visual Effects
2.Computer Vision Algorithms and Applications
1.Rolling Shutter Pose and Ego-motion Estimation using Shape-from-Template(ECCV2018)
2.BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration(ACM)
3.Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
4.3D-R2N2:A Unified Approach for Single and Multi-view 3D Object Reconstruction 5.Pixel2Mesh:Generating 3D Mesh Models form Single RGB Images
6.Mesh R-CNN(FAIR,CVPR2019)
7.Conditional Single-view Shape Generation for Multi-view Stereo Reconstruction
8.R-MVSNet: Recurrent MVSNet for High-resolution Multi-view Stereo Depth Inference
9.StereoDRNet: Dilated Residual Stereo Net(cvpr2019)
1、MVE
网站链接:
https://www.gcc.tu-darmstadt.de/home/proj/mve/index.en.jsp
2、Bundler
网站链接:
http://www.cs.cornell.edu/~snavely/bundler/
3、VisualSFM
网站链接:
https://link.zhihu.com/?target=http%3A//ccwu.me/vsfm/
4、OpenMVG
网站链接:
https://openmvg.readthedocs.io/en/latest/software/SfM/SfM/
5、ColMap
网站链接:
https://link.zhihu.com/?target=https%3A//demuc.de/colmap/
1、非常全面的三维重建相关资源列表,涵盖SLAM,SFM,MVS
https://github.com/openMVG/awesome_3DReconstruction_list
《视觉测量》(张广军版)
《multiview geometry in computer vision》
在公众号【3DCVer】后台回复“立体视觉”,即可获取完整PDF资料。
CS231A: Computer Vision, From 3D Reconstruction to Recognition:
http://web.stanford.edu/class/cs231a/
《光栅投影三维精密测量》
《基于多视图的三维结构重建》
3d reconstruction using three step phase shift:
https://github.com/phreax/structured_light
A framework for Structured Light based 3D scanning projects:
https://github.com/nikolaseu/neuvision
awesome_3DReconstruction_list:
https://github.com/openMVG/awesome_3DReconstruction_list
1、跟踪SLAM前沿动态论文,更新的很频繁
https://github.com/YiChenCityU/Recent_SLAM_Research
2、很全视觉slam资料大全
https://github.com/tzutalin/awesome-visual-slam
3、开源SLAM列表
https://github.com/OpenSLAM/awesome-SLAM-list
4、很全面的SLAM教程
https://link.zhihu.com/?target=https%3A//github.com/kanster/awesome-slam
5、非常全面的三维重建相关资源列表,涵盖SLAM,SFM,MVS
https://github.com/openMVG/awesome_3DReconstruction_list
6、很全的RGBD SLAM开源方案介绍
https://github.com/electech6/owesome-RGBD-SLAM
7、非常全面的相机总结,包括论文,设备厂商,算法,应用等
https://github.com/uzh-rpg/event-based_vision_resources
8、SLAM 学习与开发经验分享
https://github.com/GeekLiB/Lee-SLAM-source
9、中文注释版ORB-SLAM2
https://github.com/Vincentqyw/ORB-SLAM2-CHINESE
10、语义SLAM相关资料
https://zhuanlan.zhihu.com/p/64825421
基础工具:Eigen、OpenCV、PCL、ROS
后端优化的库:g2o、GTSAM、Ceres solver
1、MonoSLAM
Github地址:
https://github.com/hanmekim/SceneLib2
2、PTAM
Github地址:
https://www.robots.ox.ac.uk/~gk/PTAM/
3、ORB-SLAM
Github地址:
http://webdiis.unizar.es/~raulmur/orbslam/
4、LSD-SLAM
Github地址:
https://vision.in.tum.de/research/vslam/lsdslam
5、SVO
Github地址:
https://github.com/OpenSLAM/awesome-SLAM-list
6、DTAM
Github地址:
https://github.com/anuranbaka/OpenDTAM
7、DVO
Github地址:
https://github.com/tum-vision/dvo_slam
8、DSO
Github地址:
https://github.com/JakobEngel/dso
9、RTAB-MAP
Github地址:
https://github.com/introlab/rtabmap
10、RGBD-SLAM-V2
Github地址:
https://github.com/felixendres/rgbdslam_v2
11、Elastic Fusion
Github地址:
https://github.com/mp3guy/ElasticFusion
12、Hector SLAM
Github地址:
https://wiki.ros.org/hector_slam
13、GMapping
Github地址:
https://wiki.ros.org/gmapping
14、OKVIS
Github地址:
https://github.com/ethz-asl/okvis
15、ROVIO
Github地址:
https://github.com/ethz-asl/rovio
16、COSLAM
Github地址:
http://drone.sjtu.edu.cn/dpzou/project/coslam.php
17、DTSLAM
Github地址:https://github.com/plumonito/dtslam
18、REBVO
Github地址:
https://github.com/JuanTarrio/rebvo
1. Malaga Dataset
2. Tum: Computer Vision Lab: RGB-D
3. KITTI Dataset
4. University of Freiburg: Department of Computer Science
5. MRPT
6. ICDL-NUIM
概率机器人
视觉SLAM十四讲
计算机视觉中的多视图几何
机器人学中的状态估计
Principles of Robot Motion Theory,Algorithms and Implementation
在公众号【3DCVer】后台回复“SLAM学习资料”,获取完整PDF资料。
公开课:
https://www.youtube.com/channel/UCi1TC2fLRvgBQNe-T4dp8Eg
这些资料将同步分享在我们的学习圈「3D视觉技术」星球,更多干货资料也将在星球中补充完善。
上述内容,如有侵犯版权,请联系作者,会自行删文。
交流群
欢迎加入我们公众号读者群一起和同行交流,目前有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。
知识星球
学习3D视觉核心技术,扫描查看详情,3天内无条件退款
圈里有高质量教程资料、可答疑解惑、助你高效解决问题