import argparse
import json
import os
from pathlib import Path
from threading import Thread
os.environ['KMP_DUPLICATE_LIB_OK']='True'
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import torch
import yaml
from tqdm import tqdm
from models.experimental import attempt_load
from utils.datasets import create_dataloader
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
from utils.metrics import ap_per_class, ConfusionMatrix
from utils.plots import plot_images, output_to_target, plot_study_txt
from utils.torch_utils import select_device, time_synchronized
def test(data,
weights=None,
batch_size=8,
imgsz=640,
conf_thres=0.001,
iou_thres=0.6, # for NMS
save_json=False,
single_cls=False,
augment=False,
verbose=False,
model=None,
dataloader=None,
save_dir=Path(''), # for saving images
save_txt=False, # for auto-labelling
save_hybrid=False, # for hybrid auto-labelling
save_conf=False, # save auto-label confidences
plots=True,
wandb_logger=None,
compute_loss=None,
half_precision=True,
is_coco=False):
# Initialize/load model and set device
# 判断是否在训练时调用test,如果是则获取训练时的设备
training = model is not None
if training: # called by train.py
device = next(model.parameters()).device # get model device
else: # called directly
# 选择设备
set_logging()
device = select_device(opt.device, batch_size=batch_size)
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
# 加载模型
model = attempt_load(weights, map_location=device) # load FP32 model
gs = max(int(model.stride.max()), 32) # grid size (max stride)
# 检查输入图片分辨率是否能被32整除
imgsz = check_img_size(imgsz, s=gs) # check img_size
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
# Half
half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
# 如果设备不是cpu并且gpu数目为1,则将模型由Float32转为Float16,提高前向传播的速度
if half:
model.half()
# Configure
model.eval()
# 加载数据配置信息
if isinstance(data, str):
is_coco = data.endswith('coco.yaml')
with open(data) as f:
data = yaml.load(f, Loader=yaml.SafeLoader)
check_dataset(data) # check
nc = 1 if single_cls else int(data['nc']) # number of classes
# 设置iou阈值,从0.5~0.95,每间隔0.05取一次
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95
# iou个数
niou = iouv.numel()
# Logging
log_imgs = 0
if wandb_logger and wandb_logger.wandb:
log_imgs = min(wandb_logger.log_imgs, 100)
# Dataloader
if not training:
if device.type != 'cpu':
# 创建一个全0数组测试一下前向传播是否正常运行
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
# 创建dataloader
# 注意这里rect参数为True,yolov5的测试评估是基于矩形推理的
dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
prefix=colorstr(f'{task}: '))[0]
seen = 0
# 获取类别的名字
confusion_matrix = ConfusionMatrix(nc=nc)
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
coco91class = coco80_to_coco91_class()
# 设置tqdm进度条的显示信息
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', '[email protected]', '[email protected]:.95')
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
# 初始化测试集的损失
loss = torch.zeros(3, device=device)
# 初始化json文件的字典,统计信息,ap
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
img = img.to(device, non_blocking=True)
# 图片也由Float32->Float16
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
targets = targets.to(device)
nb, _, height, width = img.shape # batch size, channels, height, width
with torch.no_grad():
# Run model
"""
time_synchronized()函数里面进行了torch.cuda.synchronize(),再返回的time.time()
torch.cuda.synchronize()等待gpu上完成所有的工作
总的来说就是这样测试时间会更准确
"""
t = time_synchronized()
# 前向传播
# inf_out为预测结果, train_out训练结果
out, train_out = model(img, augment=augment) # inference and training outputs
# t0累计前向传播的时间
t0 += time_synchronized() - t
# Compute loss
# 如果是在训练时进行的test,则通过训练结果计算并返回测试集的GIoU, obj, cls损失
if compute_loss:
loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
# Run NMS
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
t = time_synchronized()
"""
non_max_suppression进行非极大值抑制;
conf_thres为置信度阈值,iou_thres为iou阈值
merge为是否合并框
"""
out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
t1 += time_synchronized() - t
# Statistics per image
# 为每一张图片做统计, 写入预测信息到txt文件, 生成json文件字典, 统计tp等
for si, pred in enumerate(out):
# 获取第si张图片的标签信息, 包括class,x,y,w,h
# targets[:, 0]为标签属于哪一张图片的编号
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
# 获取标签类别
tcls = labels[:, 0].tolist() if nl else [] # target class
path = Path(paths[si])
# 统计测试图片数量
seen += 1
# 如果预测为空,则添加空的信息到stats里
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
continue
# Predictions
predn = pred.clone()
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
# Append to text file
# 保存预测结果为txt文件
if save_txt:
# 获得对应图片的长和宽
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
# xyxy格式->xywh, 并对坐标进行归一化处理
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
# 保存预测类别和坐标到txt文件
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
# W&B logging - Media Panel Plots
if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
"class_id": int(cls),
"box_caption": "%s %.3f" % (names[cls], conf),
"scores": {"class_score": conf},
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
# Append to pycocotools JSON dictionary
# 保存coco格式的json文件字典
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
# 获取图片id
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
"""
xyxy格式为左上角右下角的坐标
xywh是中心点坐标和长和宽
而coco的json格式中的框坐标格式为xywh,此处的xy为左上角坐标
也就是coco的json格式的坐标格式为:左上角坐标+长宽
所以下面一行代码就是将:中心点坐标->左上角
"""
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
"""
image_id:图片id, 即属于哪张图
category_id: 类别, coco91class()从索引0~79映射到索引0~90
bbox:框的坐标
score:置信度
"""
for p, b in zip(pred.tolist(), box.tolist()):
jdict.append({'image_id': image_id,
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
# Assign all predictions as incorrect
# 初始化预测评定,niou为iou阈值的个数
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
if nl:
# detected用来存放已检测到的目标
detected = [] # target indices
tcls_tensor = labels[:, 0]
# target boxes
# 获得xyxy格式的框并乘以wh
tbox = xywh2xyxy(labels[:, 1:5])
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
if plots:
confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
# Per target class
# 对图片中的每个类单独处理
for cls in torch.unique(tcls_tensor):
# 标签框该类别的索引
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
# 预测框该类别的索引
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
# Search for detections
if pi.shape[0]:
# Prediction to target ious
# box_iou计算预测框与标签框的iou值,max(1)选出最大的ious值,i为对应的索引
"""
pred shape[N, 4]
tbox shape[M, 4]
box_iou shape[N, M]
ious shape[N, 1]
i shape[N, 1], i里的值属于0~M
"""
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
# Append detections
detected_set = set()
for j in (ious > iouv[0]).nonzero(as_tuple=False):
# 获得检测到的目标
d = ti[i[j]] # detected target
if d.item() not in detected_set:
# 添加d到detected
detected_set.add(d.item())
detected.append(d)
# iouv为以0.05为步长 0.5到0.95的序列
# 获得不同iou阈值下的true positive
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
if len(detected) == nl: # all targets already located in image
break
# Append statistics (correct, conf, pcls, tcls)
# 每张图片的结果统计到stats里
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
# Plot images
# 画出第1个batch的图片的ground truth和预测框并保存
if plots and batch_i < 3:
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
# Compute statistics
# 将stats列表的信息拼接到一起
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
# 根据上面得到的tp等信息计算指标
# 精准度TP/TP+FP,召回率TP/P,map,f1分数,类别
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
# nt是一个列表,测试集每个类别有多少个标签框
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
# 打印指标结果
pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
# Print results per class
# 细节展示每一个类别的指标
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Print speeds
# 打印前向传播耗费的时间、nms的时间、总时间
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
if not training:
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
if wandb_logger and wandb_logger.wandb:
val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
wandb_logger.log({"Validation": val_batches})
if wandb_images:
wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
# Save JSON
# 采用之前保存的json格式预测结果,通过cocoapi评估指标
# 需要注意的是 测试集的标签也需要转成coco的json格式
if save_json and len(jdict):
# 获取图片id
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
# 获取预测框的json文件路径并打开
anno_json = '../coco/annotations/instances_val2017.json' # annotations json
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
with open(pred_json, 'w') as f:
json.dump(jdict, f)
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, 'bbox')
if is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results ([email protected]:0.95, [email protected])
except Exception as e:
print(f'pycocotools unable to run: {e}')
# Return results
model.float() # for training
if not training:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=4, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--project', default='runs/test', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
opt.save_json |= opt.data.endswith('coco.yaml')
opt.data = check_file(opt.data) # check file
print(opt)
check_requirements()
if opt.task in ('train', 'val', 'test'): # run normally
test(opt.data,
opt.weights,
opt.batch_size,
opt.img_size,
opt.conf_thres,
opt.iou_thres,
opt.save_json,
opt.single_cls,
opt.augment,
opt.verbose,
save_txt=opt.save_txt | opt.save_hybrid,
save_hybrid=opt.save_hybrid,
save_conf=opt.save_conf,
)
elif opt.task == 'speed': # speed benchmarks
for w in opt.weights:
test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False)
# task == 'study'时,就评估yolov5系列和yolov3-spp各个模型在各个尺度下的指标并可视化
elif opt.task == 'study': # run over a range of settings and save/plot
# python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
for w in opt.weights:
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
y = [] # y axis
for i in x: # img-size
print(f'\nRunning {f} point {i}...')
r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
plots=False)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
os.system('zip -r study.zip study_*.txt')
plot_study_txt(x=x) # plot