POJ2976 Dropping tests 题解

POJ2976 Dropping tests 题解

题目链接:POJ2976 Dropping tests

题意

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

img.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is img. However, if you drop the third test, your cumulative average becomes img.

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ aibi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

经典的01分数规划问题

注意到题目要求的就是选 n − k n-k nk 个物品使得
∑ a i × 1 ∑ b i \sum a_i \times \dfrac{1}{\sum b_i} ai×bi1
尽可能的大

不妨假设
∑ a i × 1 ∑ b i ≥ x \sum a_i \times \dfrac{1}{\sum b_i} \ge x ai×bi1x
移项可得
∑ a i − x ∑ b i ≥ 0 \sum a_i - x \sum b_i \ge 0 aixbi0
于是可以二分一个 x x x

每次暴力检验 p s [ i ] = a i − x b i ps[i] = a_i - xb_i ps[i]=aixbi

注意要排个序然后取最大的 n − k n-k nk p s [ i ] ps[i] ps[i]

时间复杂度 O ( log ⁡ 2 1 0 6 × Q n log ⁡ n ) O(\log_2 10^6 \times Q n \log n) O(log2106×Qnlogn)

代码:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)(2e3+15)
const double eps=1e-13;
int n,k,a[N],b[N];
double ps[N];
bool ck(double x)
{
    for(int i=1; i<=n; i++)
        ps[i]=a[i]-x*b[i];
    sort(ps+1,ps+1+n);
    double res=0;
    for(int i=k+1; i<=n; i++)
        res+=ps[i];
    return res>=0;
}
signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    cout << fixed << setprecision(0);
    // freopen("check.in","r",stdin);
    // freopen("check.out","w",stdout);
    while(cin >> n >> k && n)
    {
        for(int i=1; i<=n; i++) cin >> a[i];
        for(int i=1; i<=n; i++) cin >> b[i];
        double l=0,r=1;
        while(r-l>1e-6)
        {
            double mid=(l+r)/2;
            if(ck(mid))l=mid;
            else r=mid;
        }
        cout << l*100 << endl;
    }

    return 0;
}

转载请说明出处

你可能感兴趣的:(OI,算法)