超参数优化:贝叶斯优化

文章目录

  • 贝叶斯优化在机器学习和深度学习的使用
    • 1.项目简介
    • 2.机器学习案例
      • 2.1导入相关库
      • 2.2导入数据及数据清洗
      • 2.3拆分数据集
      • 2.4贝叶斯优化
      • 2.5使用最优参数组合重新训练模型,并进行预测
    • 3.深度学习案例
      • 3.1导入相关库
      • 3.2导入数据
      • 3.3构建模型
      • 3.4贝叶斯优化

贝叶斯优化在机器学习和深度学习的使用

1.项目简介

  该项目主要介绍贝叶斯优化的Python实现,使用Pycharm完成!分为机器学习和深度学习两个小案例,数据及代码文件。

2.机器学习案例

2.1导入相关库

import pandas as pd
from sklearn.neighbors import KNeighborsClassifier as KNN  # KNN模型
from sklearn.model_selection import cross_val_score  # 交叉验证评估
from sklearn.metrics import accuracy_score  # 计算准确率
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import scale  # 标准化
from hyperopt import hp
from hyperopt import fmin  # 最小化目标函数
from hyperopt import tpe  # 搜索算法
from hyperopt import Trials
from hyperopt import STATUS_OK

  hyperopt即贝叶斯优化库,下面使用的数据为iris数据,调整的超参数为:是否标准化(scale),KNN模型的近邻数(n_neighbors)。

2.2导入数据及数据清洗

iris = pd.read_csv('E:/Jupyter/Mojin/HyperparameterOpt/data/iris.csv')
print('iris shape: {0} \n iris tail(10): \n {1}'.format(iris.shape, iris.tail(10)))

# 将Species指标数据类型转换成category
Species = iris['Species'].astype('category')
# 使用标签的编码作为真正的数据
iris['Species'] = Species.cat.codes
print('iris tail(10): \n{0}'.format(iris.tail(10)))

  [输出:]
超参数优化:贝叶斯优化_第1张图片
  可以看到:总共有150个样本,其中Species指标为我们的目标变量,
其他的为特征变量,其中Species已经数值化。

2.3拆分数据集

features = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']
trainX, testX, trainY, testY = train_test_split(iris[features], iris['Species'],
                                                test_size=0.25,  # 25%数据作为测试集
                                                random_state=1234)
print('trainX shape: {0} \n trainY shape: {1}'.format(trainX.shape, trainY.shape))

  [输出:]
在这里插入图片描述

2.4贝叶斯优化

def hyperopt_train_test(params, X=trainX, Y=trainY):
    X_ = X[:]
    if 'scale' in params:
        if params['scale'] == 1:
            X_ = scale(X_)  # 数据标准化
            del params['scale']
    model = KNN(n_neighbors=params['n_neighbors'])
    return cross_val_score(model, X_, Y, cv=3).mean()  # 3折交叉验证均值

# 需要调参的超参数空间域
space = {'scale': hp.choice('scale', [0, 1]),
         'n_neighbors': hp.choice('n_neighbors', range(1, 70))}

def f(params):
    acc = hyperopt_train_test(params=params)
    return {'loss': -acc, 'status': STATUS_OK}

trials = Trials()
best = fmin(fn=f,
            space=space,
            algo=tpe.suggest,
            max_evals=100,
            trials=trials)
print('best hyperparameter:\n', best)

  [输出:]
在这里插入图片描述
  可以看到,最优参数组合为:近邻数为8,不需要进行数据标准化,其准确率约为:97.30%!

2.5使用最优参数组合重新训练模型,并进行预测

model = KNN(n_neighbors=best['n_neighbors']).fit(trainX, trainY)
predY = model.predict(testX)
testAcc = accuracy_score(testY, predY)
print('test accuracy: {0}'.format(testAcc))  # 数据量有点少!

  [输出:]
在这里插入图片描述
  可以看到测试集的准确率约为:97.37%!

3.深度学习案例

3.1导入相关库

from hyperopt import Trials, STATUS_OK, tpe
from hyperas import optim
from hyperas.distributions import choice, uniform

from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import RMSprop

from keras.datasets import mnist
from keras.utils import np_utils

  hyperas是将hyperopt与keras相结合的库,下面使用的数据为:mnist数据集!

3.2导入数据

def data():
    (X_train, y_train), (X_test, y_test) = mnist.load_data('F:/DL-data/mnist.npz')
    X_train = X_train.reshape(60000, 784)
    X_test = X_test.reshape(10000, 784)
    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')
    X_train /= 255
    X_test /= 255
    nb_classes = 10
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)
    return X_train, Y_train, X_test, Y_test

3.3构建模型

def model(X_train, Y_train, X_test, Y_test):
    model = Sequential()
    model.add(Dense(512, input_shape=(784,)))
    model.add(Activation('relu'))
    model.add(Dropout({{uniform(0, 1)}}))
    model.add(Dense({{choice([256, 512, 1024])}}))
    model.add(Activation('relu'))
    model.add(Dropout({{uniform(0, 1)}}))
    model.add(Dense(10))
    model.add(Activation('softmax'))

    rms = RMSprop()
    model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['accuracy'])

    model.fit(X_train, Y_train,
              batch_size={{choice([64, 128])}},
              epochs=1,
              verbose=2,
              validation_data=(X_test, Y_test))
    score, acc = model.evaluate(X_test, Y_test, verbose=0)
    print('Test accuracy:', acc)
    return {'loss': -acc, 'status': STATUS_OK, 'model': model}

3.4贝叶斯优化

if __name__ == '__main__':

    X_train, Y_train, X_test, Y_test = data()

    best_run, best_model = optim.minimize(model=model,
                                          data=data,
                                          algo=tpe.suggest,
                                          max_evals=5,
                                          trials=Trials())
    print("Evalutation of best performing model:")
    print(best_model.evaluate(X_test, Y_test))
    print(best_model)

  [输出:]
在这里插入图片描述
  测试集的准确率为:96.06%!

你可能感兴趣的:(深度学习,机器学习,深度学习,python)