机器学习实战
'''
@version: 0.0.1
@Author: tqrs
@dev: python3 vscode
@Date: 2019-11-12 09:29:53
@LastEditTime: 2019-11-12 12:24:30
@FilePath: \\机器学习实战\\12-FP-growth算法\\FPGrowth.py
@Descripttion: 只需对数据库进行两次扫描,第一次对所有元素项出现次数进行统计;第二次只考虑频繁元素,它能够更为高效的挖掘数据
'''
class treeNode:
def __init__(self, nameValue, numOccur, parentNode):
# 节点元素名称
self.name = nameValue
# 出现次数
self.count = numOccur
# 指向下一个相似节点的指针
self.nodeLink = None
# 指向父节点的指针
self.parent = parentNode
# 指向子节点的字典,以子节点的元素名称为键,指向子节点的指针为值
self.children = {}
# 增加节点的出现次数值
def inc(self, numOccur):
self.count += numOccur
# 输出节点和子节点的FP树结构
def disp(self, ind=1):
print(' ' * ind, self.name, ' ', self.count)
for child in self.children.values():
child.disp(ind + 1)
def createTree(dataSet, minSup=1):
"""
[summary]:将数据集转化为FP树
1. 遍历数据集,统计各元素项出现次数,创建头指针表
2. 移除头指针表中不满足最小值尺度的元素项
3. 第二次遍历数据集,创建FP树。对每个数据集中的项集:
3.1 初始化空FP树
3.2 对每个项集进行过滤和重排序
3.3 使用这个项集更新FP树,从FP树的根节点开始:
3.3.1 如果当前项集的第一个元素项存在于FP树当前节点的子节点中,则更新这个子节点的计数值
3.3.2 否则,创建新的子节点,更新头指针表
3.3.3 对当前项集的其余元素项和当前元素项的对应子节点递归3.3的过程
Arguments:
dataSet -- 数据集
Keyword Arguments:
minSup {int} -- 最小支持度 (default: {1})
Returns:
[type] -- [description]
"""
# 第一次遍历数据集,创建头指针表
headerTable = {}
for trans in dataSet:
for item in trans:
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
# 移除不满足最小支持度的元素项
for k in list(headerTable.keys()):
if headerTable[k] < minSup:
del (headerTable[k])
# 空元素集,返回空
freqItemSet = set(headerTable.keys())
if len(freqItemSet) == 0:
return None, None
# 增加一个数据项,用于存放指向相似元素项指针
for k in headerTable:
headerTable[k] = [headerTable[k], None]
# 创造根节点
retTree = treeNode('Null Set', 1, None)
for tranSet, count in dataSet.items():
# 对一个项集tranSet,记录其中每个元素项的全局频率,用于排序
localD = {}
for item in tranSet:
if item in freqItemSet:
localD[item] = headerTable[item][0]
if len(localD) > 0:
# 根据全局频率对每个事务中的元素进行排序
orderedItems = [
v[0] for v in sorted(
localD.items(), key=lambda p: p[1], reverse=True)
]
# 使用排序后的元素项集对树进行填充
updateTree(orderedItems, retTree, headerTable, count)
return retTree, headerTable
def updateTree(items, inTree, headerTabel, count):
# 有该元素项时计数值+1
if items[0] in inTree.children:
inTree.children[items[0]].inc(count)
else:
# 没有这个元素项时创建一个新节点
inTree.children[items[0]] = treeNode(items[0], count, inTree)
if headerTabel[items[0]][1] == None:
headerTabel[items[0]][1] = inTree.children[items[0]]
else:
updateHeader(headerTabel[items[0]][1], inTree.children[items[0]])
# 对剩下的元素项迭代调用updateTree函数
if len(items) > 1:
updateTree(items[1::], inTree.children[items[0]], headerTabel, count)
def updateHeader(nodeToTest, targetNode):
# 获取头指针表中该元素项对应的单链表的尾节点,然后将其指向新节点targetNode
while (nodeToTest.nodeLink != None):
nodeToTest = nodeToTest.nodeLink
nodeToTest.nodeLink = targetNode
def loadSimpDat():
# 加载数据集
simpDat = [['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], ['z'],
['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
return simpDat
def createInitSet(dataSet):
# 生成数据集
retDict = {}
for trans in dataSet:
retDict[frozenset(trans)] = 1
return retDict
def test_fp():
simpDat = loadSimpDat()
initSet = createInitSet(simpDat)
myFPtree, myHeaderTab = createTree(initSet, 3)
myFPtree.disp()
def ascendTree(leafNode, prefixPath):
# 迭代上溯整课树
if leafNode.parent != None:
prefixPath.append(leafNode.name)
ascendTree(leafNode.parent, prefixPath)
def findPrefixPath(basePat, treeNode): # treeNode comes from header table
# 创建前缀路径
condPats = {}
while treeNode != None:
prefixPath = []
ascendTree(treeNode, prefixPath)
if len(prefixPath) > 1:
condPats[frozenset(prefixPath[1:])] = treeNode.count
treeNode = treeNode.nodeLink
return condPats
def test_pre():
simpDat = loadSimpDat()
initSet = createInitSet(simpDat)
myFPtree, myHeaderTab = createTree(initSet, 3)
condPats = findPrefixPath('r', myHeaderTab['r'][1])
print(condPats)
def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
"""
[summary]:递归查找频繁项集
Arguments:
inTree {[type]} -- [description]
headerTable {[type]} -- [description]
minSup {[type]} -- [description]
preFix {[type]} -- [description]
freqItemList -- 频繁项集列表
"""
# 对头指针表中的元素项按其出现频率进行排序(默认从小到大)
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1][0])]
for basePat in bigL: # start from bottom of header table
newFreqSet = preFix.copy()
newFreqSet.add(basePat)
freqItemList.append(newFreqSet)
condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
myCondTree, myHead = createTree(condPattBases, minSup)
if myHead != None:
print('conditional tree for: ', newFreqSet)
myCondTree.disp(1)
mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
def test_mineTree():
simpDat = loadSimpDat()
initSet = createInitSet(simpDat)
myFPtree, myHeaderTab = createTree(initSet, 3)
freqItems = []
mineTree(myFPtree, myHeaderTab, 3, set([]), freqItems)
if __name__ == '__main__':
paresdDat = [
line.split()
for line in open(r'.\12-FP-growth算法\kosarak.dat').readlines()
]
initSet = createInitSet(paresdDat)
myFPtree, myHeaderTab = createTree(initSet, 100000)
myFreaList = []
mineTree(myFPtree, myHeaderTab, 100000, set([]), myFreaList)
print('len:', len(myFreaList), 'myFreaList', myFreaList)