java中的集合

java集合概述

Java 集合可分为 CollectionMap 两种体系

  • Collection接口:单列数据,定义了存取一组对象的方法的集合
    • List:元素有序(指的是存储时,与存放顺序保持一致)、可重复的集合
    • Set:元素无序、不可重复的集合
      java中的集合_第1张图片
  • Map接口:双列数据,保存具有映射关系“key-value对”的集合
    java中的集合_第2张图片

ArrayList和LinkedList的异同?
答:二者都线程不安全,相对线程安全的Vector,执行效率高。此外,ArrayList是实现了基于动态数组的数据结构,LinkedList基于链表的数据结构。对于随机访问get和set,ArrayList优于LinkedList,因为LinkedList要移动指针。对于新增和删除操作add(特指插入)和remove,LinkedList比较占优势,因为ArrayList要移动数据。

ArrayList和Vector的区别?
Vector和ArrayList几乎是完全相同的,唯一的区别在于Vector是同步类(synchronized),属于强同步类。因此开销就比ArrayList要大,访问要慢。正常情况下,大多数的Java程序员使用ArrayList而不是Vector,因为同步完全可以由程序员自己来控制。Vector每次扩容请求其大小的2倍空间,而ArrayList是1.5倍。Vector还有一个子类Stack。

Collection子接口:Set接口

  • Set接口描述

    • Set接口是Collection的子接口,set接口没有提供额外的方法
    • Set 集合不允许包含相同的元素,如果试把两个相同的元素加入同一个Set 集合中,则添加操作失败。
    • Set 判断两个对象是否相同不是使用 == 运算符,而是根据 equals() 方法
  • Set实现类之一:HashSet

    • HashSet 是 Set 接口的典型实现,大多数时候使用 Set 集合时都使用这个实现类。
    • HashSet 按 Hash 算法来存储集合中的元素,因此具有很好的存取、查找、删除性能
    • HashSet 具有以下特点:不能保证元素的排列顺序、HashSet 不是线程安全的、集合元素可以是 null
    • HashSet 集合判断两个元素相等的标准:两个对象通过 hashCode() 方法比较相等,并且两个对象的 equals() 方法返回值也相等
    • 对于存放在Set容器中的对象,对应的类一定要重写equals()和hashCode(Object obj)方法,以实现对象相等规则。即:“相等的对象必须具有相等的散列码”
  • 向HashSet中添加元素的过程

    • 当向 HashSet 集合中存入一个元素时,HashSet 会调用该对象的 hashCode() 方法来得到该对象的 hashCode 值,然后根据 hashCode 值,通过某种散列函数决定该对象在 HashSet 底层数组中的存储位置。(这个散列函数会与底层数组的长度相计算得到在数组中的下标,并且这种散列函数计算还尽可能保证能均匀存储元素,越是散列分布,该散列函数设计的越好)
    • 如果两个元素的hashCode()值相等,会再继续调用equals方法,如果equals方法结果为true,添加失败;如果为false,那么会保存该元素,但是该数组的位置已经有元素了,那么会通过链表的方式继续链接。
    • 如果两个元素的 equals() 方法返回 true,但它们的 hashCode() 返回值不相等,hashSet 将会把它们存储在不同的位置,但依然可以添加成功。
  • 重写 equals() 方法的基本原则

    • 当一个类有自己特有的“逻辑相等”概念,当改写equals()的时候,总是要改写hashCode(),根据一个类的equals方法(改写后),两个截然不同的实例有可能在逻辑上是相等的,但是,根据Object.hashCode()方法,它们仅仅是两个对象。因此,违反了“相等的对象必须具有相等的散列码”。
    • 结论:复写equals方法的时候一般都需要同时复写hashCode方法。通常参与计算hashCode的对象的属性也应该参与到equals()中进行计算。
  • Set实现类之二:LinkedHashSet

    • LinkedHashSet 是 HashSet 的子类
    • LinkedHashSet 根据元素的 hashCode 值来决定元素的存储位置,但它同时使用双向链表维护元素的次序,这使得元素看起来是以插入顺序保存的。
    • LinkedHashSet插入性能略低于 HashSet,但在迭代访问 Set 里的全部元素时有很好的性能。
    • LinkedHashSet 不允许集合元素重复
      java中的集合_第3张图片
  • Set实现类之三:TreeSet

    • TreeSet 是 SortedSet 接口的实现类,TreeSet 可以确保集合元素处于排序状态。
    • TreeSet底层使用红黑树结构存储数据
    • TreeSet 两种排序方法:自然排序和定制排序。默认情况下,TreeSet 采用自然排序
  • 排 序—自然排序

    • 自然排序:TreeSet 会调用集合元素的 compareTo(Object obj) 方法来比较元素之间的大小关系,然后将集合元素按升序(默认情况)排列。
    • 如果试图把一个对象添加到 TreeSet 时,则该对象的类必须实现 Comparable 接口。实现 Comparable 的类必须实现 compareTo(Object obj) 方法,两个对象即通过compareTo(Object obj) 方法的返回值来比较大小。
    • Comparable 的典型实现:
      • BigDecimal、BigInteger 以及所有的数值型对应的包装类:按它们对应的数值大小进行比较
      • Character:按字符的 unicode值来进行比较
      • Boolean:true 对应的包装类实例大于 false 对应的包装类实例
      • String:按字符串中字符的 unicode 值进行比较
      • Date、Time:后边的时间、日期比前面的时间、日期大
    • 向 TreeSet 中添加元素时,只有第一个元素无须比较compareTo()方法,后面添加的所有元素都会调用compareTo()方法进行比较。
    • 因为只有相同类的两个实例才会比较大小,所以向 TreeSet 中添加的应该是同一个类的对象。
    • 对于 TreeSet 集合而言,它判断两个对象是否相等的唯一标准是:两个对象通过 compareTo(Object obj) 方法比较返回值。
    • 当需要把一个对象放入 TreeSet 中,重写该对象对应的 equals() 方法时,应保证该方法与 compareTo(Object obj) 方法有一致的结果:如果两个对象通过equals() 方法比较返回 true,则通过 compareTo(Object obj) 方法比较应返回 0。否则,让人难以理解。
  • 排 序—定制排序

    • TreeSet的自然排序要求元素所属的类实现Comparable接口,如果元素所属的类没有实现Comparable接口,或不希望按照升序(默认情况)的方式排列元素或希望按照其它属性大小进行排序,则考虑使用定制排序。定制排序,通过Comparator接口来实现。需要重写compare(T o1,T o2)方法。
    • 利用int compare(T o1,T o2)方法,比较o1和o2的大小:如果方法返回正整数,则表示o1大于o2;如果返回0,表示相等;返回负整数,表示o1小于o2。
    • 要实现定制排序,需要将实现Comparator接口的实例作为形参传递给TreeSet的构造器。
    • 此时,仍然只能向TreeSet中添加类型相同的对象。否则发生ClassCastException异常。
    • 使用定制排序判断两个元素相等的标准是:通过Comparator比较两个元素返回了0。

Map接口

  • Map接口概述
    • Map与Collection并列存在。用于保存具有映射关系的数据:key-value
    • Map 中的 key 和 value 都可以是任何引用类型的数据
    • Map 中的 key 用Set来存放,不允许重复,即同一个 Map 对象所对应的类,须重写 hashCode()和equals() 方法
    • 常用String类作为Map的“键”
    • key 和 value 之间存在单向一对一关系,即通过指定的 key 总能找到唯一的、确定的 value
    • Map接口的常用实现类:HashMap、TreeMap、LinkedHashMap和Properties。其中,HashMap是 Map 接口使用频率最高的实现类
Map map = new HashMap();
//map.put(..,..)省略
System.out.println("map的所有key:");
Set keys = map.keySet();// HashSet
for (Object key : keys) {
	System.out.println(key + "->" + map.get(key));
}
System.out.println("map的所有的value:");
Collection values = map.values();
Iterator iter = values.iterator();
while (iter.hasNext()) {
	System.out.println(iter.next());
}
System.out.println("map所有的映射关系:");
// 映射关系的类型是Map.Entry类型,它是Map接口的内部接口
Set mappings = map.entrySet();
for (Object mapping : mappings) {
	Map.Entry entry = (Map.Entry) mapping;
	System.out.println("key是:" + entry.getKey() + ",value是:" + entry.getValue());
}
  • Map实现类之一:HashMap

    • HashMap是 Map 接口使用频率最高的实现类。
    • 允许使用null键和null值,与HashSet一样,不保证映射的顺序。
    • 所有的key构成的集合是Set:无序的、不可重复的。所以,key所在的类要重写:equals()和hashCode()
    • 所有的value构成的集合是Collection:无序的、可以重复的。所以,value所在的类要重写:equals()
    • 一个key-value构成一个entry
    • 所有的entry构成的集合是Set:无序的、不可重复的
    • HashMap 判断两个 key 相等的标准是:两个 key 通过 equals() 方法返回 true,hashCode 值也相等。
    • HashMap 判断两个 value相等的标准是:两个 value 通过 equals() 方法返回 true。
  • HashMap的存储结构

    • JDK 7及以前版本:HashMap是数组+链表结构(即为链地址法)
    • JDK 8版本发布以后:HashMap是数组+链表+红黑树实现。
      java中的集合_第4张图片
      java中的集合_第5张图片
  • HashMap源码中的重要常量

    • DEFAULT_INITIAL_CAPACITY : HashMap的默认容量,16
    • MAXIMUM_CAPACITY : HashMap的最大支持容量,2^30
    • DEFAULT_LOAD_FACTOR:HashMap的默认加载因子
    • TREEIFY_THRESHOLD:Bucket中链表长度大于该默认值,转化为红黑树
    • UNTREEIFY_THRESHOLD:Bucket中红黑树存储的Node小于该默认值,转化为链表
    • MIN_TREEIFY_CAPACITY:桶中的Node被树化时最小的hash表容量。(当桶中Node的数量大到需要变红黑树时,若hash表容量小于MIN_TREEIFY_CAPACITY时,此时应执行resize扩容操作这个MIN_TREEIFY_CAPACITY的值至少是TREEIFY_THRESHOLD的4倍。)
    • table:存储元素的数组,总是2的n次幂
    • entrySet:存储具体元素的集
    • size:HashMap中存储的键值对的数量
    • modCount:HashMap扩容和结构改变的次数。
    • threshold:扩容的临界值,=容量*填充因子
    • loadFactor:填充因子
  • HashMap的存储结构:JDK 1.8之前

    • HashMap的内部存储结构其实是数组和链表的结合。当实例化一个HashMap时,系统会创建一个长度为Capacity的Entry数组,这个长度在哈希表中被称为容量(Capacity),在这个数组中可以存放元素的位置我们称之为“桶”(bucket),每个bucket都有自己的索引,系统可以根据索引快速的查找bucket中的元素。
    • 每个bucket中存储一个元素,即一个Entry对象,但每一个Entry对象可以带一个引用变量,用于指向下一个元素,因此,在一个桶中,就有可能生成一个Entry链。而且新添加的元素作为链表的head。
  • HashMap添加元素的过程 向HashMap中添加entry1(key,value),

    • 首先计算entry1中key的哈希值(根据key所在类的hashCode()计算得到),此哈希值经过处理以后,得到在底层Entry[]数组中要存储的位置i。如果位置i上没有元素,则entry1直接添加成功。
    • 如果位置i上已经存在entry2(或还有链表存在的entry3,entry4),则需要通过循环的方法,依次
      比较entry1中key和其他的entry。如果彼此hash值不同,则直接添加成功。
    • 如果hash值相同,继续比较二者是否equals。如果返回值为true,则使用entry1的value去替换equals为true的entry的value;如果遍历一遍以后,发现所有的equals返回都为false,则entry1仍可添加成功。entry1指向原有的entry元素。
      java中的集合_第6张图片
  • HashMap的扩容:
    当HashMap中的元素越来越多的时候,hash冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对HashMap的数组进行扩容,而在HashMap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。

  • HashMap什么时候进行扩容呢?
    当HashMap中的元素个数超过数组大小(数组总大小length,不是数组中个数size)*loadFactor 时 , 就 会 进 行 数 组 扩 容 , loadFactor 的默认 值 (DEFAULT_LOAD_FACTOR)为0.75,这是一个折中的取值。也就是说,默认情况下,数组大小(DEFAULT_INITIAL_CAPACITY)为16,那么当HashMap中元素个数超过16*0.75=12(这个值就是代码中的threshold值,也叫做临界值)的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。

  • HashMap的存储结构:JDK 1.8

    • HashMap的内部存储结构其实是数组+链表+树的结合。当实例化一个HashMap时,会初始化initialCapacity和loadFactor,在put第一对映射关系时,系统会创建一个长度为initialCapacity的Node数组,这个长度在哈希表中被称为容量(Capacity),在这个数组中可以存放元素的位置我们称之为“桶”(bucket),每个bucket都有自己的索引,系统可以根据索引快速的查找bucket中的元素。
    • 每个bucket中存储一个元素,即一个Node对象,但每一个Node对象可以带一个引用变量next,用于指向下一个元素,因此,在一个桶中,就有可能生成一个Node链。也可能是一个一个TreeNode对象,每一个TreeNode对象可以有两个叶子结点left和right,因此,在一个桶中,就有可能生成一个TreeNode树。而新添加的元素作为链表的last,或树的叶子结点。
  • HashMap什么时候进行扩容和树形化?

    • 当HashMap中的元素个数超过数组大小(数组总大小length,不是数组中个数size)loadFactor 时 , 就会进行数组扩容 , loadFactor 的默认 值 (DEFAULT_LOAD_FACTOR)为0.75,这是一个折中的取值。也就是说,默认情况下,数组大小(DEFAULT_INITIAL_CAPACITY)为16,那么当HashMap中元素个数超过160.75=12(这个值就是代码中的threshold值,也叫做临界值)的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。
    • 当HashMap中的其中一个链的对象个数如果达到了8个,此时如果capacity没有达到64,那么HashMap会先扩容解决,如果已经达到了64,那么这个链会变成树,结点类型由Node变成TreeNode类型。当然,如果当映射关系被移除后,下次resize方法时判断树的结点个数低于6个,也会把树再转为链表。
  • 关于映射关系的key是否可以修改?answer:不要修改
    映射关系存储到HashMap中会存储key的hash值,这样就不用在每次查找时重新计算每一个Entry或Node(TreeNode)的hash值了,因此如果已经put到Map中的映射关系,再修改key的属性,而这个属性又参与hashcode值的计算,那么会导致匹配不上。

  • 总结:JDK1.8相较于之前的变化:

    • 1.HashMap map = new HashMap();//默认情况下,先不创建长度为16的数组
    • 2.当首次调用map.put()时,再创建长度为16的数组
    • 3.数组为Node类型,在jdk7中称为Entry类型
    • 4.形成链表结构时,新添加的key-value对在链表的尾部(七上八下)
    • 5.当数组指定索引位置的链表长度>8时,且map中的数组的长度> 64时,此索引位置上的所有key-value对使用红黑树进行存储。
  • 谈谈你对HashMap中put/get方法的认识?如果了解再谈谈HashMap的扩容机制?默认大小是多少?什么是负载因子(或填充比)?什么是吞吐临界值(或阈值、threshold)?

  • 面试题:负载因子值的大小,对HashMap有什么影响?

    • 负载因子的大小决定了HashMap的数据密度。
    • 负载因子越大密度越大,发生碰撞的几率越高,数组中的链表越容易长,造成查询或插入时的比较次数增多,性能会下降。
    • 负载因子越小,就越容易触发扩容,数据密度也越小,意味着发生碰撞的几率越小,数组中的链表也就越短,查询和插入时比较的次数也越小,性能会更高。但是会浪费一定的内容空间。而且经常扩容也会影响性能,建议初始化预设大一点的空间。
    • 按照其他语言的参考及研究经验,会考虑将负载因子设置为0.7~0.75,此时平均检索长度接近于常数。
  • Map实现类之二:LinkedHashMap

    • LinkedHashMap 是 HashMap 的子类
    • 在HashMap存储结构的基础上,使用了一对双向链表来记录添加元素的顺序
    • 与LinkedHashSet类似,LinkedHashMap 可以维护 Map 的迭代顺序:迭代顺序与 Key-Value 对的插入顺序一致
//HashMap中的内部类:Node
static class Node<K,V> implements Map.Entry<K,V> {
	final int hash;
	final K key;
	V value;
	Node<K,V> next; 
}

//LinkedHashMap中的内部类:Entry
static class Entry<K,V> extends HashMap.Node<K,V> {
	Entry<K,V> before, after;
	Entry(int hash, K key, V value, Node<K,V> next) {
		super(hash, key, value, next);
	} 
}
  • Map实现类之三:TreeMap
    • TreeMap存储 Key-Value 对时,需要根据 key-value 对进行排序。TreeMap 可以保证所有的 Key-Value 对处于有序状态
    • TreeSet底层使用红黑树结构存储数据
    • TreeMap 的 Key 的排序:
      • 自然排序:TreeMap 的所有的 Key 必须实现 Comparable 接口,而且所有的 Key 应该是同一个类的对象,否则将会抛出 ClasssCastException
      • 定制排序:创建 TreeMap 时,传入一个 Comparator 对象,该对象负责对TreeMap 中的所有 key 进行排序。此时不需要 Map 的 Key 实现Comparable 接口
    • TreeMap判断两个key相等的标准:两个key通过compareTo()方法或者compare()方法返回0。
  • Map实现类之四:Hashtable
    • Hashtable是个古老的 Map 实现类,JDK1.0就提供了。不同于HashMap,Hashtable是线程安全的
    • Hashtable实现原理和HashMap相同,功能相同。底层都使用哈希表结构,查询速度快,很多情况下可以互用。
    • 与HashMap不同,Hashtable 不允许使用 null 作为 key 和 value
    • 与HashMap一样,Hashtable 也不能保证其中 Key-Value 对的顺序
    • Hashtable判断两个key相等、两个value相等的标准,与HashMap一致。
  • Map实现类之五:Properties
    • Properties 类是 Hashtable 的子类,该对象用于处理属性文件
    • 由于属性文件里的 key、value 都是字符串类型,所以 Properties 里的 key 和 value 都是字符串类型
    • 存取数据时,建议使用setProperty(String key,String value)方法和getProperty(String key)方法
Properties pros = new Properties();
pros.load(new FileInputStream("jdbc.properties"));
String user = pros.getProperty("user");
System.out.println(user);

Collections工具类

  • Collections 是一个操作 Set、List 和 Map 等集合的工具类

  • Collections 中提供了一系列静态的方法对集合元素进行排序、查询和修改等操作,
    还提供了对集合对象设置不可变、对集合对象实现同步控制等方法

  • 排序操作:(均为static方法)

    • reverse(List):反转 List 中元素的顺序
    • shuffle(List):对 List 集合元素进行随机排序
    • sort(List):根据元素的自然顺序对指定 List 集合元素按升序排序
    • sort(List,Comparator):根据指定的 Comparator 产生的顺序对 List 集合元素进行排序
    • swap(List,int, int):将指定 list 集合中的 i 处元素和 j 处元素进行交换
  • Collections常用方法(查找、替换)

    • Object max(Collection):根据元素的自然顺序,返回给定集合中的最大元素
    • Object max(Collection,Comparator):根据 Comparator 指定的顺序,返回给定集合中的最大元素
    • Object min(Collection)
    • Object min(Collection,Comparator)
    • int frequency(Collection,Object):返回指定集合中指定元素的出现次数
    • void copy(List dest,List src):将src中的内容复制到dest中 boolean replaceAll(List list,Object oldVal,Object newVal):使用新值替换List 对象的所有旧值

你可能感兴趣的:(java,算法程序设计与数据结构,java)