最近看完了Opencv By Example这本书,感觉里面的案例很不错,其中有个案例是通过背景差分识别桌子上的螺钉螺母等机械零件,这对后期的机械臂视觉抓取提供了视觉处理部分的方法论,虽然有很多现成的ROS库可用于视觉抓取工作,但是都略显复杂,对传感器的要求也较高,所以想尝试使用opencv先进行简单处理。方向有了,接下来首要解决的问题当然就是ROS和Opencv结合。
ROS在安装的过程中就已经集成了Opencv3.0以上的版本,所以安装配置几乎不需要咱ROS用户过多考虑,ROS虽然无法直接进行图像处理,但是提供的cv_bridge可以完美转换和被转换图像数据格式。
但即使如此,想要完整的将opencv的项目移植到ROS项目中,也需要费一点功夫,接下来我会将Opencv By Example书中的代码转换成ROS中可用的程序,提供CMake和package.xml配置情况。
创建ROS包命名为redwall_arm_vision,里面只有三个文件,src目录和CMakeList.txt、package.xml,在src目录添加一张图片用于接下来的处理,我用的是大家非常熟悉的 lena.jpg:
在添加一个cpp文件,就命名为main.cpp把,程序内容如下:
#include
#include
#include
using namespace std;
// OpenCV includes
#include
#include
#include
#include
#include
#include
using namespace cv;
#include
#include
#include
#include
int main( int argc, char** argv )
{
int sample;
cout << "请输入0~7:" << endl;
cin>>sample;
switch(sample){
case 0:
{
cout << "Sample 0, Mat zeros" << endl;
Mat m= Mat::zeros(5,5, CV_32F);
cout << m << endl;
break;
}
case 1:
{
cout << "Sample 0, Mat ones" << endl;
Mat m= Mat::ones(5,5, CV_32F);
cout << m << endl;
break;
}
case 2:
{
cout << "Sample 0, Mat eye" << endl;
Mat m= Mat::eye(5,5, CV_32F);
cout << m << endl;
Mat a= Mat::eye(Size(3,2), CV_32F);
Mat b= Mat::ones(Size(3,2), CV_32F);
Mat c= a+b;
Mat d= a-b;
cout << "Sample 0, 矩阵元素和差" << endl;
cout << a << endl;
cout << b << endl;
cout << c << endl;
cout << d << endl;
break;
}
case 3:
{
cout << "Sample 0, Mat operations:" << endl;
Mat m0= Mat::eye(3,3, CV_32F);
m0=m0+Mat::ones(3,3, CV_32F);
Mat m1= Mat::eye(2,3, CV_32F);
Mat m2= Mat::ones(3,2, CV_32F);
cout << "\nm0\n" << m0 << endl;
cout << "\nm1\n" << m1 << endl;
cout << "\nm2\n" << m2 << endl;
cout << "\nm1.*2\n" << m1*2 << endl;
cout << "\n(m1+2).*(m1+3)\n" << (m1+1).mul(m1+3) << endl;
cout << "\nm1*m2\n" << m1*m2 << endl;
cout << "\nt(m2)\n" << m2.t() << endl;
cout << "\ninv(m0)\n" << m0.inv() << endl;
break;
}
case 4:
{
Mat image= imread("/home/redwall/catkin_ws/src/redwall_arm_vision/src/lena.jpg", CV_LOAD_IMAGE_COLOR);
int myRow=511;
int myCol=511;
int val=*(image.data+myRow*image.cols*image.channels()+ myCol);
cout << "Pixel value: " << val << endl;
// 有imshow就会报段错误
// imshow("Lena", image);
break;
}
case 5:
{
Mat image= imread("/home/redwall/catkin_ws/src/redwall_arm_vision/src/lena.jpg", CV_LOAD_IMAGE_COLOR);
int myRow=511;
int myCol=511;
int B=*(image.data+myRow*image.cols*image.channels()+ myCol + 0);
int G=*(image.data+myRow*image.cols*image.channels()+ myCol + 1);
int R=*(image.data+myRow*image.cols*image.channels()+ myCol + 2);
cout << "Pixel value (B,G,R): (" << B << "," << G << "," << R << ")" << endl;
break;
}
case 6:
{
ros::init(argc,argv,"image_color");
ros::NodeHandle nh;
image_transport::ImageTransport it(nh);
image_transport::Publisher pub = it.advertise("camera/image", 1);
/**************ROS与Opencv图像转换***********************/
Mat image= imread("/home/redwall/catkin_ws/src/redwall_arm_vision/src/lena.jpg", CV_LOAD_IMAGE_COLOR);
sensor_msgs::ImagePtr msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8", image).toImageMsg();
ros::Rate loop_rate(5);
while (nh.ok()) {
pub.publish(msg);
ros::spinOnce();
loop_rate.sleep();
}
}
case 7:
{
ros::init(argc,argv,"image_gray");
ros::NodeHandle nh;
image_transport::ImageTransport it(nh);
image_transport::Publisher pub = it.advertise("camera/image", 1);
/**************ROS与Opencv图像转换***********************/
Mat gray= imread("/home/redwall/catkin_ws/src/redwall_arm_vision/src/lena.jpg", CV_LOAD_IMAGE_GRAYSCALE);
sensor_msgs::ImagePtr msg = cv_bridge::CvImage(std_msgs::Header(), "mono8", gray).toImageMsg();
ros::Rate loop_rate(5);
while (nh.ok()) {
pub.publish(msg);
ros::spinOnce();
loop_rate.sleep();
}
}
}
return 0;
}
以上程序的case1到case5来源于书中的测试代码,可用看到Mat类是可用直接用的,只要包含了cv的头文件,这对于我们进行矩阵运算都是很方便的,并没有太大的区别,但是直接对图像进行处理的函数都会直接报错,例如
// 有imshow就会报段错误
imshow("Lena", image);
imwrite();
// 这个貌似也失效了
waitkey();
重点关注的是case6和case7,创建ROS节点,读取RGB三通道图像"bgr8"或者灰度单通道图像“mono8”,然后通过cv_bridge将图像转换成sensor_msgs话题发布在/camera/image消息下,1表示的是消息队列的长度。
CMakeLists.txt内容如下:
cmake_minimum_required(VERSION 2.8.3)
project(redwall_arm_vision)
find_package(catkin REQUIRED COMPONENTS
roscpp
rospy
std_msgs
cv_bridge
geometry_msgs
sensor_msgs
OpenCV
image_transport
)
catkin_package(
# INCLUDE_DIRS include
# LIBRARIES redwall_arm_vision
CATKIN_DEPENDS roscpp rospy std_msgs
# DEPENDS system_lib
)
include_directories(
# include
${catkin_INCLUDE_DIRS}
${OpenCV_INCLUDE_DIRS}
)
add_executable(main src/main.cpp)
target_link_libraries(main ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})
package.xml内容如下:
redwall_arm_vision
0.0.0
redwall_arm_vision
sijia
TODO
catkin
roscpp
rospy
std_msgs
cv_bridge
geometry_msgs
sensor_msgs
image_transport
roscpp
rospy
std_msgs
cv_bridge
geometry_msgs
sensor_msgs
message_generation
image_transport
cv_bridge
geometry_msgs
sensor_msgs
message_runtime
roscpp
rospy
std_msgs
image_transport
编译然后启动节点,输入数字6或者7,然后打开RViz添加image消息即可观察到图像:
$ catkin_make -DCATKIN_WHITELIST_PACKAGES="redwall_arm_vision"
$ roscore
$ rosrun redwall_arm_vision main
$ rviz