ROS naviagtion analysis: costmap_2d--LayeredCostmap

class uml
classes relation
在数据成员中,有两个重要的变量:Costmap2D costmap_;std::vector > plugins_;
这个类相对比较简单,首先来看构造函数:

LayeredCostmap::LayeredCostmap(std::string global_frame, bool rolling_window, bool track_unknown) :
    costmap_(), global_frame_(global_frame), rolling_window_(rolling_window), initialized_(false), size_locked_(false)
{
  if (track_unknown)
    costmap_.setDefaultValue(255);
  else
    costmap_.setDefaultValue(0);
}

调用costmap_setDefaultValue 方法,实际上设定了类costmap_2d 的一个成员变量default_value_ 这个值在class costmap_2d 中是这样使用的:memset(costmap_, default_value_, size_x_ * size_y_ * sizeof(unsigned char)); 实际存储地图的变量就是class costmap_2dcostmap_ 数据成员。

析构函数中,所有的操作就是弹出plugin: plugins_.pop_back();

函数LayeredCostmap::resizeMap 就是给class costmap_2dcostmap_ 成员的大小重新做分配。然后根据plugin对每一层的地图调用其父类Costmap2D成员的initial 方法,实际效果就是将plugin所指向的每一层地图的大小都设置为和LayeredCostmap::costmap_ 数据成员一样的空间大小。

{
  size_locked_ = size_locked;
  costmap_.resizeMap(size_x, size_y, resolution, origin_x, origin_y);
  for (vectorshared_ptr >::iterator plugin = plugins_.begin(); plugin != plugins_.end();
      ++plugin)
  {
    (*plugin)->matchSize();
  }
}

函数 LayeredCostmap::updateMap 完成对每一层地图的更新,更新过程分为两步updateBoundsupdateCosts


void LayeredCostmap::updateMap(double robot_x, double robot_y, double robot_yaw)
{
  if (rolling_window_)
  {
    double new_origin_x = robot_x - costmap_.getSizeInMetersX() / 2;
    double new_origin_y = robot_y - costmap_.getSizeInMetersY() / 2;
    costmap_.updateOrigin(new_origin_x, new_origin_y);
  }

  if (plugins_.size() == 0)
    return;

  minx_ = miny_ = 1e30;
  maxx_ = maxy_ = -1e30;

  for (vectorshared_ptr >::iterator plugin = plugins_.begin(); plugin != plugins_.end();
      ++plugin)
  {
    (*plugin)->updateBounds(robot_x, robot_y, robot_yaw, &minx_, &miny_, &maxx_, &maxy_);
  }

  int x0, xn, y0, yn;
  costmap_.worldToMapEnforceBounds(minx_, miny_, x0, y0);
  costmap_.worldToMapEnforceBounds(maxx_, maxy_, xn, yn);

  x0 = std::max(0, x0);
  xn = std::min(int(costmap_.getSizeInCellsX()), xn + 1);
  y0 = std::max(0, y0);
  yn = std::min(int(costmap_.getSizeInCellsY()), yn + 1);

  ROS_DEBUG("Updating area x: [%d, %d] y: [%d, %d]", x0, xn, y0, yn);

  if (xn < x0 || yn < y0)
    return;

  {
    // Clear and update costmap under a single lock
    boost::unique_lock lock(*(costmap_.getMutex()));
    costmap_.resetMap(x0, y0, xn, yn);
    for (vectorshared_ptr >::iterator plugin = plugins_.begin(); plugin != plugins_.end();
        ++plugin)
    {
      (*plugin)->updateCosts(costmap_, x0, y0, xn, yn);
    }
  }
}

这里我们来看这两个更新过程参数:

  (*plugin)->updateBounds(robot_x, robot_y, robot_yaw, &minx_, &miny_, &maxx_, &maxy_);
   (*plugin)->updateCosts(costmap_, x0, y0, xn, yn);

更新Bounds过程由于传入的参数是&minx_, &miny_, &maxx_, &maxy_ 构成了一个矩形范围。由于针对不同的类的实例,调用不同的类的方法。
对于Static Map:

{
  if (!map_received_ || !(has_updated_data_ || has_extra_bounds_))
    return;

  useExtraBounds(min_x, min_y, max_x, max_y);

  double wx, wy;

  mapToWorld(x_, y_, wx, wy);
  *min_x = std::min(wx, *min_x);
  *min_y = std::min(wy, *min_y);

  mapToWorld(x_ + width_, y_ + height_, wx, wy);
  *max_x = std::max(wx, *max_x);
  *max_y = std::max(wy, *max_y);

  has_updated_data_ = false;
}

Static map 只在第一次做更新,Bounds 范围是整张Map的大小,而且在UpdateBounds过程中没有对Static Map层的数据做过任何的更新。

而对于 ObstacleLayer::updateBounds :主要的操作是更新Obstacles Map层的数据,然后才是更新Bounds

 std::vector observations, clearing_observations;

  // get the marking observations
  current = current && getMarkingObservations(observations);
  // get the clearing observations
  current = current && getClearingObservations(clearing_observations);
  // update the global current status
  current_ = current;
  // raytrace freespace
  for (unsigned int i = 0; i < clearing_observations.size(); ++i)
  {
    raytraceFreespace(clearing_observations[i], min_x, min_y, max_x, max_y);
  }
  for (std::vector::const_iterator it = observations.begin(); it != observations.end(); ++it)
  {
    const Observation& obs = *it;

    const pcl::PointCloud& cloud = *(obs.cloud_);
    for (unsigned int i = 0; i < cloud.points.size(); ++i)
    {
      double px = cloud.points[i].x, py = cloud.points[i].y, pz = cloud.points[i].z;
      // now we need to compute the map coordinates for the observation
      unsigned int mx, my;
      if (!worldToMap(px, py, mx, my))
      {
        continue;
      }
      unsigned int index = getIndex(mx, my);
      costmap_[index] = LETHAL_OBSTACLE;
      touch(px, py, min_x, min_y, max_x, max_y);
    }
  }
  updateFootprint(robot_x, robot_y, robot_yaw, min_x, min_y, max_x, max_y);

对于InflationLayer::updateBounds 则保持上一次的min_x, min_y, max_x, max_y
对于VoxelLayer::updateBounds 更新过程和 ObstacleLayer::updateBounds 基本一致,只是增加了z 作为判断是否将2d地图的点设定为LETHAL_OBSTACLE

updateCosts: 完成updateBounds 后,开始调用(*plugin)->updateCosts(costmap_, x0, y0, xn, yn); 。函数的第一个参数是指的master map,后面的bounds是对每个plugin自己维护的map的更新界限做设定。这里需要分析每一个单独的costmap和master map是哪些类在维护:
Master map: 这是由类LayeredCostmapCostmap2D costmap_ 维护。
StaticLayer StaticLayer VoxelLayer: 这些类是继承于Costmap2D ,因此可以直接操作Costmap2D 的数据成员 unsigned char* costmap_;。因此可以看成每一层地图都是类Costmap2D 的一个实例。
InflationLayer 没有继承于Costmap2D 是因为这个类并不需要维护一张自己的地图,它仅仅是需要直接操作master map的数据就可以了。
每个plugin调用自己代表的层的updateCosts方法:
StaticLayerObstacleLayer 基本上都是调用了CostmapLayer::updateWithOverwrite,CostmapLayer::updateWithTrueOverwrite, CostmapLayer::updateWithMax 等方法。因为CostmapLayer 是这两个的父类。
但是InflationLayer::updateCosts 则不同,因为它既没有自己层的map实例,也不是从CostmapLayer 继承而来。它的updateCosts 是这个类的核心操作。关于他的updateCosts 操作,将在InflationLayer 篇具体分析这个算法的实现过程,这个算法实现了对障碍物膨胀操作。

函数bool LayeredCostmap::isCurrent() 主要的操作是对操作的实时性提供保证,提供是否发生超时的信息。

 bool current = (ros::Time::now() - last_updated_).toSec() <= expected_update_rate_.toSec();

函数void LayeredCostmap::setFootprint(conststd::vector& footprint_spec)

{
  footprint_ = footprint_spec;
  costmap_2d::calculateMinAndMaxDistances(footprint_spec, inscribed_radius_, circumscribed_radius_);

  for (vectorshared_ptr >::iterator plugin = plugins_.begin(); plugin != plugins_.end();
      ++plugin)
  {
    (*plugin)->onFootprintChanged();
  }
}

inscribed_radius_, circumscribed_radius_ 是计算得到的机器人尺寸的内切圆和外切圆半径。
这里重点关注InflationLayer 类是如何调用onFootprintChanged() 的。对于其他类型的plugin实例来说,其本身并没有重载这个函数,所以都是调用的Layer类的空函数virtual void onFootprintChanged() {}

  cell_inflation_radius_ = cellDistance(inflation_radius_);
  computeCaches();

函数computeCaches()

void InflationLayer::computeCaches()
{
  if (cell_inflation_radius_ == 0)
    return;

  // based on the inflation radius... compute distance and cost caches
  if (cell_inflation_radius_ != cached_cell_inflation_radius_)
  {
    deleteKernels();

    cached_costs_ = new unsigned char*[cell_inflation_radius_ + 2];
    cached_distances_ = new double*[cell_inflation_radius_ + 2];

    for (unsigned int i = 0; i <= cell_inflation_radius_ + 1; ++i)
    {
      cached_costs_[i] = new unsigned char[cell_inflation_radius_ + 2];
      cached_distances_[i] = new double[cell_inflation_radius_ + 2];
      for (unsigned int j = 0; j <= cell_inflation_radius_ + 1; ++j)
      {
        cached_distances_[i][j] = hypot(i, j);
      }
    }

    cached_cell_inflation_radius_ = cell_inflation_radius_;
  }

  for (unsigned int i = 0; i <= cell_inflation_radius_ + 1; ++i)
  {
    for (unsigned int j = 0; j <= cell_inflation_radius_ + 1; ++j)
    {
      cached_costs_[i][j] = computeCost(cached_distances_[i][j]);
    }
  }
}

在函数定义中,维护两个指针:

 cached_costs_ = new unsigned char*[cell_inflation_radius_ + 2];
 cached_distances_ = new double*[cell_inflation_radius_ + 2];

第一阶段,计算出cached_distances_: cached_distances_[i][j] = hypot(i, j); ,其中i j 的范围都是0:cell_inflation_radius_ + 1
第二阶段,通过计算得到的cached_distances_ 计算cached_costs_cached_costs_[i][j] = computeCost(cached_distances_[i][j]);。通过这个操作,现在可以任意给出在0-cell_inflation_radius_ cell范围的两个cells的costs,以后对地图做膨胀时,只需要查看某个cell(i1,j1)和obstacle cell(i,j)的下标就可以通过查表知道这个cell的代价是多少。这个表的大小仅仅和机器人的几何尺寸相关,一旦机器人尺寸发生改变,这个函数就需要再次被调用。
OK, LayeredCostmap的分析就这么多了~相信这样来来回回反复的分析这些类之间的调用关系,对于理解costmap_2d这个小怪兽是必要的。

你可能感兴趣的:(Mobile,Robot,导航-地图)