输入层数为5,中间隐藏层的维度为10,输出层的维度为2,激活函数使用ReLU激活函数
使用nn.Sequential的方式定义,将网络以序列的方式进行组装,使用每个层前面的输出作为输入,内部会自动维护层与层之间的权重矩阵以及偏置向量,方式如下:
import torch
model = torch.nn.Sequential(
torch.nn.Linear(5, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 2),
)
print(model)
out:
Sequential(
(0): Linear(in_features=5, out_features=10, bias=True)
(1): ReLU()
(2): Linear(in_features=10, out_features=2, bias=True)
)
采用继承nn.Module,这需要我们自己实现__init__和 forward 前向传播,forward方法接收输入数据,经不同层函数处理,最后返回线性函数linear2的处理结果作为最终的预测输出值,具体如下:
import torch
class SimpleLayerNet(torch.nn.Module):
def __init__(self, D_in, H, D_out):
super(SimpleLayerNet,self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.relu = torch.nn.ReLU()
self.linear2 = torch.nn.Linear(H , D_out)
def forward(self,x):
h_relu = self.relu(self.linear1(x))
y_pred = self.Linear2(h_relu)
return y_pred
model = SimpleLayerNet(5, 10, 2)
print(model)
out:
SimpleLayerNet(
(linear1): Linear(in_features=5, out_features=10, bias=True)
(relu): ReLU()
(linear2): Linear(in_features=10, out_features=2, bias=True)