实验3 手写字体识别【机器学习】

推荐

python实现手写数字识别(小白入门)

原文MNIST Handwritten Digit Recognition in PyTorch
翻译用PyTorch实现MNIST手写数字识别(非常详细)
mnist.gz/mnist.csv数据集下载

mnist 数据集 下载 训练 测试 pytorch
pytorch及torchvision下载不超过可看
清华镜像源下载pytorch及torchvision

配置环境miniconda+pycharm【机器学习】
的第四步 创建 虚拟环境
anaconda常用指令,更新查看添加下载源等
和第五步使用虚拟环境 7扩展 在虚拟环境中安装必要的包

注意

sklearn.externals.joblib导入问题
from sklearn.externals import joblib改为import joblib

代码 python实现手写数字识别(小白入门)

项目结构

实验3 手写字体识别【机器学习】_第1张图片

1.py

需要下载joblib包

import numpy as np
from sklearn.linear_model import LogisticRegression
import os
import joblib

#数据预处理
trainData = np.loadtxt(open('digits_training.csv', 'r'), delimiter=",",skiprows=1)#装载数据
MTrain, NTrain = np.shape(trainData)  #行列数
print("训练集:",MTrain,NTrain)
xTrain = trainData[:,1:NTrain]
xTrain_col_avg = np.mean(xTrain, axis=0) #对各列求均值
xTrain =(xTrain- xTrain_col_avg)/255  #归一化
yTrain = trainData[:,0]

'''================================='''
#训练模型
model = LogisticRegression(solver='lbfgs', multi_class='multinomial', max_iter=500)
model.fit(xTrain, yTrain)
print("训练完毕")

'''================================='''
#测试模型
testData = np.loadtxt(open('digits_testing.csv', 'r'), delimiter=",",skiprows=1)
MTest,NTest = np.shape(testData)
print("测试集:",MTest,NTest)
xTest = testData[:,1:NTest]
xTest = (xTest-xTrain_col_avg) /255   # 使用训练数据的列均值进行处理
yTest = testData[:,0]
yPredict = model.predict(xTest)
errors = np.count_nonzero(yTest - yPredict) #返回非零项个数
print("预测完毕。错误:", errors, "条")
print("测试数据正确率:", (MTest - errors) / MTest)

'''================================='''
#保存模型

# 创建文件目录
dirs = 'testModel'
if not os.path.exists(dirs):
    os.makedirs(dirs)
joblib.dump(model, dirs+'/model.pkl')
print("模型已保存")

结果1

实验3 手写字体识别【机器学习】_第2张图片
实验3 手写字体识别【机器学习】_第3张图片

2.py

需要下载cv2包
实验3 手写字体识别【机器学习】_第4张图片
在test下放置几张数字图片
实验3 手写字体识别【机器学习】_第5张图片

import cv2
import numpy as np
import joblib

map=cv2.imread(r"test/img1.png")
GrayImage = cv2.cvtColor(map, cv2.COLOR_BGR2GRAY)
# 获取图片的宽和高
width, height = map.shape[:2][::-1]
ret,thresh2=cv2.threshold(GrayImage,width,height,cv2.THRESH_BINARY_INV)
Image=cv2.resize(thresh2,(28,28))
img_array = np.asarray(Image)
z=img_array.reshape(1,-1)

'''================================================'''

model = joblib.load('testModel'+'/model.pkl')
yPredict = model.predict(z)
print(yPredict)
y=str(yPredict)
cv2.putText(map,y, (10,20), cv2.FONT_HERSHEY_SIMPLEX,0.7,(0,0,255), 2, cv2.LINE_AA)
cv2.imshow("map",map)
cv2.waitKey(0)

结果2

实验3 手写字体识别【机器学习】_第6张图片

实验3 手写字体识别【机器学习】_第7张图片
实验3 手写字体识别【机器学习】_第8张图片

实验3 手写字体识别【机器学习】_第9张图片
实验3 手写字体识别【机器学习】_第10张图片
实验3 手写字体识别【机器学习】_第11张图片
实验3 手写字体识别【机器学习】_第12张图片

实验3 手写字体识别【机器学习】_第13张图片

实验3 手写字体识别【机器学习】_第14张图片
实验3 手写字体识别【机器学习】_第15张图片

代码 用PyTorch实现MNIST手写数字识别(非常详细)

pytorch.c

import torch
import torchvision
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
torch.manual_seed(random_seed)

train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=True, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=False, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_test, shuffle=True)

examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
# print(example_targets)
# print(example_data.shape)

fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Ground Truth: {}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum)

train_losses = []
train_counter = []
test_losses = []
test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)]


def train(epoch):
    network.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = network(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data),
                                                                           len(train_loader.dataset),
                                                                           100. * batch_idx / len(train_loader),
                                                                           loss.item()))
            train_losses.append(loss.item())
            train_counter.append((batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
            torch.save(network.state_dict(), './model.pth')
            torch.save(optimizer.state_dict(), './optimizer.pth')


def test():
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
    test_loss /= len(test_loader.dataset)
    test_losses.append(test_loss)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


train(1)

test()  # 不加这个,后面画图就会报错:x and y must be the same size
for epoch in range(1, n_epochs + 1):
    train(epoch)
    test()

fig = plt.figure()
plt.plot(train_counter, train_losses, color='blue')
plt.scatter(test_counter, test_losses, color='red')
plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')

examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
with torch.no_grad():
    output = network(example_data)
fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Prediction: {}".format(output.data.max(1, keepdim=True)[1][i].item()))
    plt.xticks([])
    plt.yticks([])
plt.show()

# ----------------------------------------------------------- #

continued_network = Net()
continued_optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum)

network_state_dict = torch.load('model.pth')
continued_network.load_state_dict(network_state_dict)
optimizer_state_dict = torch.load('optimizer.pth')
continued_optimizer.load_state_dict(optimizer_state_dict)

# 注意不要注释前面的“for epoch in range(1, n_epochs + 1):”部分,
# 不然报错:x and y must be the same size
# 为什么是“4”开始呢,因为n_epochs=3,上面用了[1, n_epochs + 1)
for i in range(4, 9):
    test_counter.append(i * len(train_loader.dataset))
    train(i)
    test()

fig = plt.figure()
plt.plot(train_counter, train_losses, color='blue')
plt.scatter(test_counter, test_losses, color='red')
plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')
plt.show()



运行结果

实验3 手写字体识别【机器学习】_第16张图片
实验3 手写字体识别【机器学习】_第17张图片

实验3 手写字体识别【机器学习】_第18张图片
实验3 手写字体识别【机器学习】_第19张图片
实验3 手写字体识别【机器学习】_第20张图片
实验3 手写字体识别【机器学习】_第21张图片

实验3 手写字体识别【机器学习】_第22张图片
实验3 手写字体识别【机器学习】_第23张图片
实验3 手写字体识别【机器学习】_第24张图片
实验3 手写字体识别【机器学习】_第25张图片
实验3 手写字体识别【机器学习】_第26张图片
实验3 手写字体识别【机器学习】_第27张图片

实验3 手写字体识别【机器学习】_第28张图片

实验3 手写字体识别【机器学习】_第29张图片
运行之后项目结构
实验3 手写字体识别【机器学习】_第30张图片

代码 自己

import torch
import torchvision
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
# import matplotlib.pyplot as plt


num_epochs = 6
batch_size = 100
learning_rate = 0.1
momentum = 0.5
log_interval = 10
random_seed = 1
torch.manual_seed(random_seed)
input_size=28*28
num_classes=10

train_dataset= torchvision.datasets.MNIST('./data/', train=True, download=True,
                                    transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ]))
test_dataset=torchvision.datasets.MNIST('./data/', train=False, download=True,transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ]))

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=batch_size, shuffle=False)

class NeuralNet(nn.Module):
    def __init__(self,input_size,hidden_size,num_classes):
        super(NeuralNet, self).__init__()
        self.fc1=nn.Linear(input_size,hidden_size[0])
        self.fc2=nn.Linear(hidden_size[0],hidden_size[1])
        self.fc3=nn.Linear(hidden_size[1],num_classes)
        self.relu = nn.ReLU()

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        out = self.relu(out)
        out = self.fc3(out)
        return out


model = NeuralNet(input_size, [256, 64], num_classes)

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

for epoch in range(num_epochs):
    for i,(images,labels) in enumerate(train_loader):
        images=images.reshape(-1,28*28)
        outputs=model(images)
        labels_onehot = F.one_hot(labels)
        loss=criterion(outputs,labels_onehot.float())

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if i % 600 == 0:
            print("Epoch :{} \t Loss:{:.6f}".format(epoch, loss.item()))

torch.save(model,'model_total.ckpt')
# torch.save(net.state_dict(),'model_para.ckpt')

#-------------------------------------------------------------------

model=torch.load('model_total.ckpt')
'''
net=NeuralNet(input_size,[500,100],num_classes)
net.load_state_dict(torch.load('model_para.ckpt'))
'''

def acc(labels,outputs):
    _,predicted=torch.max(outputs.data,1)
    num=len(labels)
    right=(predicted==labels).sum().item()
    return num,right


with torch.no_grad():
    correct,total=0,0
    for images,labels in test_loader:
        images=images.reshape(-1,28*28)
        outputs=model(images)
        num,right=acc(labels,outputs)
        correct=correct+right
        total=total+num
    print('Accuracy of the network on the 10000 test images:{}%'.format(100*correct/total))


结果

Epoch :0 	 Loss:2.294961
Epoch :1 	 Loss:0.086749
Epoch :2 	 Loss:0.101823
Epoch :3 	 Loss:0.045709
Epoch :4 	 Loss:0.053201
Epoch :5 	 Loss:0.032638
Accuracy of the network on the 10000 test images:98.0%

你可能感兴趣的:(机器学习,机器学习,python,人工智能)