代码复现------TransT

论文地址:[2103.15436] Transformer Tracking (arxiv.org)

代码地址:chenxin-dlut/TransT: Transformer Tracking (CVPR2021) (github.com)

创建虚拟环境并且激活:

conda create -n transt python=3.7
conda activate transt

安装PyTorch:

去官网查找与你cuda相匹配的版本例如我的cuda为11.1如下

安装依赖库: 

conda install matplotlib pandas tqdm
pip install opencv-python tb-nightly visdom scikit-image tikzplotlib gdown
conda install cython scipy
sudo apt-get install libturbojpeg
pip install pycocotools jpeg4py
pip install wget yacs
pip install shapely==1.6.4.post2

 shapely也可安装最新版本,我这台电脑pip安装没有发现这个版本

配置必要环境:

# Change directory to cd TransT
# Environment settings for pytracking. Saved at pytracking/evaluation/local.py
python -c "from pytracking.evaluation.environment import create_default_local_file; create_default_local_file()"
# Environment settings for ltr. Saved at ltr/admin/local.py
python -c "from ltr.admin.environment import create_default_local_file; create_default_local_file()"

 下载网络模型:

drive.google.com

在TransT\pytracking新建networks文件夹并且将该模型放置在该文件下

最后的设置:

dataset_root = 'E:/Pending_code/SiamGAT/tools/test_dataset/UAV123/' #Absolute path of the dataset
net_path = 'E:/Pending_code/TransT/pytracking/networks/transt.pth' #Absolute path of the model
parser = argparse.ArgumentParser(description='transt tracking')
parser.add_argument('--dataset', default='UAV123', type=str,
        help='datasets')
parser.add_argument('--video', default='bike1', type=str,
        help='eval one special video')
parser.add_argument('--vis', action='store_true',
        help='whether visualzie result')
parser.add_argument('--name', default='res/', type=str,
        help='name of results')
args = parser.parse_args()

torch.set_num_threads(1)

即可运行。

欢迎关注微信公总号,更多资料敬请期待:

你可能感兴趣的:(视觉跟踪,深度学习,pytorch,cnn)