注意力机制下的手写字体的识别

1 danet的注意力机制的手写字体分类

注意力机制下的手写字体的识别_第1张图片

 9729999899864197
0.972000002861023
0.9764999747276306
0.9754999876022339
0.9729999899864197
0.9779999852180481
0.9725000262260437
0.9754999876022339
0.9764999747276306
0.9794999957084656
0.9800000190734863
0.9764999747276306

注意力机制下的手写字体的识别_第2张图片

2  sa注意力机制

注意力机制下的手写字体的识别_第3张图片

 model= CNN(
  (conv1): Sequential(
    (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (conv2): Sequential(
    (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (conv3): Sequential(
    (0): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (BasicRFB): ShuffleAttention(
    (avg_pool): AdaptiveAvgPool2d(output_size=1)
    (gn): GroupNorm(2, 2, eps=1e-05, affine=True)
    (sigmoid): Sigmoid()
  )
  (ou

你可能感兴趣的:(图像处理,图像处理)