何为非侵入式负荷识别-特征提取

1 前言

        虽然没有人这么在文献中写道,但是我一直都认为事件检测是负荷识别的基础,特征提取是关键,负荷辨识只是一个简单的分类任务。不是说负荷辨识不重要,而是如果事件检测未检测到有电器状态发生变化,那就别谈后面的环节了,如果特征选的不好,哪怕你这个分类算法再厉害也无济于事,因此我更在看重负荷识别中事件检测和特征提取。特征提取部分是一个现在很难创新,但又不得不创新的环节。很多人找创新点时总是会选择几个常用的特征,然后在负荷辨识上下功夫。这也可见每个环节的难易程度。

2 稳态特征和暂态特征

        负荷特征一般可依据负荷所处状态的不同,划分为稳态特征和暂态特征两类[1]。非侵入式负荷辨识中,待辨识的负荷,其两类特征均由负荷设备中包含的电子元器件及其内部电路结构所决定。

2.1 稳态特征

        在己有非侵入式负荷辨识的研究中,利用负荷稳态特征进行负荷辨识最为常见。稳态特征定义:非侵入式负荷监测网络中,负荷启动或关断的动作会导致监测电气量的变化,将负荷动作前后负荷处于稳定运行状态下的有功无功、稳态电压电流等可量测或计算的电气量称为稳态特征。因负荷电器特性的不同,稳态特征在不同负荷状态变化前后表现出的差值变化不同,便可利用各类稳态特征的变化量综合或单独进行非侵入式负荷辨识,这样的稳态特征的变化量定义为稳态特征量。

 2.1.1 稳态特征种类与特点

        稳态特征的一般类型和优缺点如下表所示:     

稳态特征的一般类型和优缺点

特征类型

特征量计算方法

优点

缺点

有功功率、

无功功率

计算负荷动作

前后的差值

容易量测和计算

小型负荷功率

相近设备过多,

区分度低

电流有效值、

电流幅值、

电流波峰系数等

计算负荷动作

前后差值

容易量测和计算,波形信息含量更丰富,易于区分阻性、感性负荷

电流有效值同电流有效值特征缺点相同,电流幅值、电流波峰系数等特征不同测量情况下波动较大,不适宜单独作为特征进行辨识

V-I轨迹曲线

计算V-I轨迹曲线的围成面积、对称性等

直观,负荷信息包含度高,负荷辨识区分度高

计算较为复杂,曲线围成区域面积计算有一定误差

电流直流分量、三次谐波、五次谐波等

傅里叶分解后计算负荷动作前后差值

计算简单,负荷辨识区分度高

对噪音较为敏感

        现在常用的就是有功、无功、谐波和VI轨迹特征。其中VI轨迹特征又分为VI图像特征和VI轨迹特征值。前者就是把VI轨迹图片作为特征输入到网络中,后者是针对VI轨迹计算特征值[2]。近些年来还出现了各种各样的特征,评价一个特征的好坏就是类间区别大,类内区别小。就是说一个特征在不同种类的电器之间差别比较大,在同种电器中是稳定的。

2.2 暂态特征

        暂态特征可单独或作为稳态特征的补充特征用以进行非侵入式负荷辨识。暂态特征定义:非侵入式负荷监测网络中,负荷启动或关断的动作导致负荷状态发生变化后短暂的时间内,会导致监测电气量的变化,将这一暂态过程中负荷的电流脉冲峰值、暂态过程持续时间、电流凹凸系数等可量测或计算的电气量称为暂态特征,其数值称为特暂态特征量。

2.2.1 暂态特征的种类及特点

        暂态特征的一般类型和优缺点如下表所示:

暂态特征的一般类型和优点

特征类型

特征量计算

优点

缺点

电流脉冲峰值

提取暂态过程中采样点中电流最大值

容易量测和计算,抗干扰力强,区分度高

特征样本需及时更新,随负荷内元件老化特征量波动大

暂态过程持续过程

计算暂态过程开始和结束之间的时间差

不同于电气量特征的新的特征维度,量测稳定性好

计算较复杂,采样频率要求高,对暂态发生时刻判定要求高

电流凹凸系数

计算暂态过程电流和稳态过程电流比值

波形信息含量更丰富,易于区分不同类型负荷

必须与稳态特征结合,计算较复杂

        暂态特征与稳态特征比较不同的一点是,稳态特征是取稳态时的一个周期的采样点进行计算。而暂态特征是取暂态过程内的采样点计算得来的。暂态特征包含了很多信息,但暂态特征不够稳定,所以使用的相对较少。

        特征提取就是需要对比很多特征,你才能选择出来最有效的特征。而计算特征,只需要按照公式写代码就行

        下面展示一些典型电器的特征值。

各负荷典型特征的特征量

负荷

电流

跨度

V-I

轨迹面积

V-I轨迹对称性

功率

电流三次谐波

电流五次谐波

电流七次谐波

电磁炉

11.852

0.064

0.018

922.593

0.020

0.007

0.005

电饭煲

7.733

0.006

0.018

596.786

0.002

0.001

0.006

电烤箱

9.291

0.006

0.018

709.558

0.002

0.001

0.007

定频空调

7.150

0.008

0.056

430.543

0.065

0.096

0.098

热水壶

16.159

0.005

0.015

1237.077

0.003

0.000

0.007

微波炉

16.642

0.028

0.151

959.870

0.331

0.089

0.048

电风扇

1.320

0.049

0.258

97.204

0.083

0.028

0.020

电视机

0.907

0.025

0.037

61.226

0.103

0.028

0.023

        下面展示一些常用电器的电流曲线:

何为非侵入式负荷识别-特征提取_第1张图片

电风吹

何为非侵入式负荷识别-特征提取_第2张图片

电磁炉

何为非侵入式负荷识别-特征提取_第3张图片

电饭煲

何为非侵入式负荷识别-特征提取_第4张图片

电风扇

何为非侵入式负荷识别-特征提取_第5张图片

电烤箱

何为非侵入式负荷识别-特征提取_第6张图片

电视

何为非侵入式负荷识别-特征提取_第7张图片

定频空调

何为非侵入式负荷识别-特征提取_第8张图片

热水壶

何为非侵入式负荷识别-特征提取_第9张图片

微波炉

[1]程祥,李林芝,吴浩,丁一,宋永华,孙维真.非侵入式负荷监测与分解研究综述[J].电网技术,2016,40(10):3108-3117.DOI:10.13335/j.1000-3673.pst.2016.10.026.

[2]韩兴磊. 住宅非侵入式负荷监测算法研究[D].华南理工大学,2018.

你可能感兴趣的:(nilm,特征提取,人工智能,机器学习,matlab)