【yolov3损失函数】

文章目录

  • compute_loss()函数
  • loss_layer()函数
  • 计算giou


YOLOv3源码解析1-代码整体结构

解析的代码地址:

github:tensorflow-yolov3
本文解析计算各部分损失compute_loss()部分:

yolov3的损失函数稍微有点复杂,花了点时间看了好多篇有关yolov3的损失函数,总算有了一点点眉目,下篇文章写一下有关yolov3损失函数的理论部分。这篇源码的解析主要提现在结构图和源码的注释中,相关部分没有写专门的文字说明。
【yolov3损失函数】_第1张图片

开始在train.py的第55行调用compute_loss()计算模型训练的损失,然后再yolov3.py中进入到compute_loss()函数

compute_loss()函数

其实这部分代码并没有进行核心的计算,主要是传入相关参数,然后调用loss_layer()函数进行相关计算。

结构图:
【yolov3损失函数】_第2张图片

源码:

# 计算损失
'''
conv_sbbox,     # 卷积特征图里的原始值
pred_sbbox,     # 由conv_sbbox经过decode()函数解码获得
label_sbbox,    # [52,52,3,85]   标记框GT的坐标值,置信度,概率等多个值
true_sbbox,     # 只含标记框GT的坐标值   (3,150,4)  true_box在实际训练时传入的是下面的值 
                self.true_sbboxes: train_data[4]==sbboxes == bboxes_xywh[..,0]          # 获取小中大标记框的坐标值
                self.true_mbboxes: train_data[5]==mbboxes == bboxes_xywh[..,1]          # 获取小中大标记框的坐标值
                self.true_lbboxes: train_data[6]==lbboxes == bboxes_xywh[..,2]          # 获取小中大标记框的坐标值
'''
def compute_loss(self, label_sbbox, label_mbbox, label_lbbox, true_sbbox, true_mbbox, true_lbbox):
 
    # 检测小框损失   52*52
    with tf.name_scope('smaller_box_loss'):
        loss_sbbox = self.loss_layer(self.conv_sbbox, self.pred_sbbox, label_sbbox, true_sbbox,
                                     anchors = self.anchors[0], stride = self.strides[0])
 
    # 检测中框损失   26*26
    with tf.name_scope('medium_box_loss'):
        loss_mbbox = self.loss_layer(self.conv_mbbox, self.pred_mbbox, label_mbbox, true_mbbox,
                                     anchors = self.anchors[1], stride = self.strides[1])
 
    # 检测大框损失   13*13
    with tf.name_scope('bigger_box_loss'):
        loss_lbbox = self.loss_layer(self.conv_lbbox, self.pred_lbbox, label_lbbox, true_lbbox,
                                     anchors = self.anchors[2], stride = self.strides[2])
 
    # 广义IOU损失 ,把检测小、中、大框的广义IOU损失相加
    with tf.name_scope('giou_loss'):
        giou_loss = loss_sbbox[0] + loss_mbbox[0] + loss_lbbox[0]
 
    # 置信度损失,把检测小、中、大框的置信度损失相加
    with tf.name_scope('conf_loss'):
        conf_loss = loss_sbbox[1] + loss_mbbox[1] + loss_lbbox[1]
 
    # 分类交叉熵损失,把检测小、中、大框的分类交叉熵损失相加
    with tf.name_scope('prob_loss'):
        prob_loss = loss_sbbox[2] + loss_mbbox[2] + loss_lbbox[2]
 
    return giou_loss, conf_loss, prob_loss

loss_layer()函数

结构图:
【yolov3损失函数】_第3张图片

源码:

# 损失层
'''
conv,     # 卷积特征图里的原始值
pred,     # 由conv经过decode()函数解码获得
label,    # 标记框GT的坐标值,置信度,概率等多个值   [52,52,3,85]
bboxes,   # 只含标记框GT的坐标值   (3,150,4)
anchors   # 基准anchor的宽高
stride    # 特征图相对于原图的缩放率
'''
def loss_layer(self, conv, pred, label, bboxes, anchors, stride):

    conv_shape  = tf.shape(conv)   # 原图卷积得到的值
    batch_size  = conv_shape[0]    # 一次多少张图
    output_size = conv_shape[1]    # 特征图大小 13*13, 26*26, 52*52
    input_size  = stride * output_size    # 13*32 26*16 52*8
    # conv is reshaped here to 5 dimensions
    conv = tf.reshape(conv, (batch_size, output_size, output_size,
                             self.anchor_per_scale, 5 + self.num_class))
    # this is the logit before going into sigmoid functions
    conv_raw_conf = conv[:, :, :, :, 4:5]    # 原始的置信度,起始值就是特征图像的值
    conv_raw_prob = conv[:, :, :, :, 5:]     # 原始的预测概率,起始值就是特征图像的值
    
    pred_xywh     = pred[:, :, :, :, 0:4]    # 预测框xywh
    pred_conf     = pred[:, :, :, :, 4:5]    # 预测置信度
    
    # true coordinates (x, y, w, h)  标记坐标GT
    label_xywh    = label[:, :, :, :, 0:4]   # 标记框坐标
    # what is this?
    respond_bbox  = label[:, :, :, :, 4:5]   # 置信度,判断网格内有无物体
    # true probabilities
    label_prob    = label[:, :, :, :, 5:]    # 真值概率

    # GIOU损失
    # label_xywh and pred_xywh are used to compute giou
    # 标记框的xywh和预测框的xywh用来计算giou
    giou = tf.expand_dims(self.bbox_giou(pred_xywh, label_xywh), axis=-1)  #在第axis位置增加一个维度,-1表示最后一维
    input_size = tf.cast(input_size, tf.float32)  # 数据类型转换

    bbox_loss_scale = 2.0 - 1.0 * label_xywh[:, :, :, :, 2:3] * label_xywh[:, :, :, :, 3:4] / (input_size ** 2)
    giou_loss = respond_bbox * bbox_loss_scale * (1- giou)

    # 置信度损失
    # bboxes (true_bboxes) and pred_xywh are used to compute iou
    # 计算true_bboxes和pred_xywh的交并比
    iou = self.bbox_iou(pred_xywh[:, :, :, :, np.newaxis, :], bboxes[:, np.newaxis, np.newaxis, np.newaxis, :, :])
    # 找出与真实框 iou 值最大的预测框
    max_iou = tf.expand_dims(tf.reduce_max(iou, axis=-1), axis=-1)
    # 如果最大的 iou 小于阈值,那么认为该预测框不包含物体,则为背景框
    respond_bgd = (1.0 - respond_bbox) * tf.cast( max_iou < self.iou_loss_thresh, tf.float32 )

    conf_focal = self.focal(respond_bbox, pred_conf)   # ???
    # 计算置信度的损失(我们希望假如该网格中包含物体,那么网络输出的预测框置信度为 1,无物体时则为 0。
    conf_loss = conf_focal * (
            respond_bbox * tf.nn.sigmoid_cross_entropy_with_logits(labels=respond_bbox, logits=conv_raw_conf)
            +
            respond_bgd * tf.nn.sigmoid_cross_entropy_with_logits(labels=respond_bbox, logits=conv_raw_conf)
    )
    
    # cross-entropy for classifications
    # 分类的交叉熵损失
    prob_loss = respond_bbox * tf.nn.sigmoid_cross_entropy_with_logits(labels=label_prob, logits=conv_raw_prob)

    giou_loss = tf.reduce_mean(tf.reduce_sum(giou_loss, axis=[1,2,3,4]))
    conf_loss = tf.reduce_mean(tf.reduce_sum(conf_loss, axis=[1,2,3,4]))
    prob_loss = tf.reduce_mean(tf.reduce_sum(prob_loss, axis=[1,2,3,4]))

    return giou_loss, conf_loss, prob_loss

其中调用的3个小函数:

Focal loss让one stage detecor也变的牛逼起来,解决了class imbalance的问题。 是同时解决了正负样本不平衡以及区分简单与复杂样本的问题。

def focal(self, target, actual, alpha=1, gamma=2):
    focal_loss = alpha * tf.pow(tf.abs(target - actual), gamma)
    return focal_loss

计算giou

# 计算giou
def bbox_giou(self, boxes1, boxes2):

    boxes1 = tf.concat([boxes1[..., :2] - boxes1[..., 2:] * 0.5,
                        boxes1[..., :2] + boxes1[..., 2:] * 0.5], axis=-1)
    boxes2 = tf.concat([boxes2[..., :2] - boxes2[..., 2:] * 0.5,
                        boxes2[..., :2] + boxes2[..., 2:] * 0.5], axis=-1)

    boxes1 = tf.concat([tf.minimum(boxes1[..., :2], boxes1[..., 2:]),
                        tf.maximum(boxes1[..., :2], boxes1[..., 2:])], axis=-1)
    boxes2 = tf.concat([tf.minimum(boxes2[..., :2], boxes2[..., 2:]),
                        tf.maximum(boxes2[..., :2], boxes2[..., 2:])], axis=-1)

    boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1])
    boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1])

    left_up = tf.maximum(boxes1[..., :2], boxes2[..., :2])    # 左上
    right_down = tf.minimum(boxes1[..., 2:], boxes2[..., 2:]) # 右下

    inter_section = tf.maximum(right_down - left_up, 0.0)
    inter_area = inter_section[..., 0] * inter_section[..., 1]
    union_area = boxes1_area + boxes2_area - inter_area
    # 计算两个边界框之间的 iou 值
    iou = inter_area / union_area

    # 计算最小闭合凸面 C 左上角和右下角的坐标
    enclose_left_up = tf.minimum(boxes1[..., :2], boxes2[..., :2])
    enclose_right_down = tf.maximum(boxes1[..., 2:], boxes2[..., 2:])
    enclose = tf.maximum(enclose_right_down - enclose_left_up, 0.0)
    # 计算最小闭合凸面 C 的面积
    enclose_area = enclose[..., 0] * enclose[..., 1]
    # 根据 GIoU 公式计算 GIoU 值
    giou = iou - 1.0 * (enclose_area - union_area) / enclose_area

    return giou

两个框的交并比

# 两个框的交并比
def bbox_iou(self, boxes1, boxes2):

    boxes1_area = boxes1[..., 2] * boxes1[..., 3]
    boxes2_area = boxes2[..., 2] * boxes2[..., 3]

    boxes1 = tf.concat([boxes1[..., :2] - boxes1[..., 2:] * 0.5,
                        boxes1[..., :2] + boxes1[..., 2:] * 0.5], axis=-1)
    boxes2 = tf.concat([boxes2[..., :2] - boxes2[..., 2:] * 0.5,
                        boxes2[..., :2] + boxes2[..., 2:] * 0.5], axis=-1)

    left_up = tf.maximum(boxes1[..., :2], boxes2[..., :2])
    right_down = tf.minimum(boxes1[..., 2:], boxes2[..., 2:])

    inter_section = tf.maximum(right_down - left_up, 0.0)
    inter_area = inter_section[..., 0] * inter_section[..., 1]
    union_area = boxes1_area + boxes2_area - inter_area
    iou = 1.0 * inter_area / union_area

    return iou

你可能感兴趣的:(yolo,tensorflow,深度学习,python)