如何只将人体步态轮廓中的人给裁剪出来

写在前面

        当我们好不容易从视频或者摄像头获取到了想要的步态轮廓图,却发现无法投入神经网络训练,这是为什么呢?其实是因为像GaitSet等步态识别网络对输入图像有标准的格式,:64×64且裁剪过的人体步态轮廓图,我们只有满足这样的格式才能够投入训练。

        而本文章就是主要提供一个方式进行将获得的步态轮廓图进行裁剪,使得其符合神经网络的输入格式,可以投入训练。

 实战

核心代码:

def cut(image):
    '''
    通过找到人的最小最大高度与宽度把人的轮廓分割出来,、
    因为原始轮廓图为二值图,因此头顶为将二值图像列相加后,形成一列后第一个像素值不为0的索引。
    同理脚底为形成一列后最后一个像素值不为0的索引。
    人的宽度也同理。
    :param image: 需要裁剪的图片 N*M的矩阵
    :return: temp: 裁剪后的图片 size*size的矩阵。flag:是否是符合要求的图片
    '''
    image = np.array(image)

    # 找到人的最小最大高度与宽度
    height_min = (image.sum(axis=1) != 0).argmax()
    height_max = ((image.sum(axis=1) != 0).cumsum()).argmax()
    width_min = (image.sum(axis=0) != 0).argmax()
    width_max = ((image.sum(axis=0) != 0).cumsum()).argmax()
    head_top = image[height_min, :].argmax()
    # 设置切割后图片的大小,为size*size,因为人的高一般都会大于宽
    size = height_max - height_min
    temp = np.zeros((size, size))

    # 将width_max-width_min(宽)乘height_max-height_min(高,szie)的人的轮廓图,放在size*size的图片中央
    # l = (width_max-width_min)//2
    # r = width_max-width_min-l
    # 以头为中心,将width_max-width_min(宽)乘height_max-height_min(高,size)的人的轮廓图,放在size*size的图片中央
    l1 = head_top-width_min
    r1 = width_max-head_top
    # 若宽大于高,或头的左侧或右侧身子比要生成图片的一般要大。则此图片为不符合要求的图片
    flag = False
    if size <= width_max-width_min or size//2 < r1 or size//2 < l1:
        flag = True
        return temp, flag
    # centroid = np.array([(width_max+width_min)/2,(height_max+height_min)/2],dtype='int')
    temp[:, (size//2-l1):(size//2+r1)] = image[height_min:height_max, width_min:width_max]

    return temp, flag

         枝干代码:

def get_cImg(path, size=64):
    '''
    剪切图片
    :param path: 输入图片路径
    :param cut_path: 剪切图片后的输出路径
    :param size: 要剪切的图片大小
    :return:
    '''
    save_path = path.replace('Fgmask', 'Cuted')
    if not os.path.exists(save_path):
        os.makedirs(save_path)

    img_list = os.listdir(path)
    start = int(img_list[0].split('.')[0])
    end = int(img_list[-1].split('.')[0])
    for id in range(start, end):
        img_name = str(id) + '.png'
        img = Image.open(os.path.join(path, img_name))
        image, flag = cut(img)
        if not flag:
            Image.fromarray(image).convert('L').resize((size, size)).save(os.path.join(save_path, img_name))
    print(path + ' is Cuted!')

        使用教程:

# 使用案例
if __name__ == "__main__":
    path = 'Package/Fgmask/tds_nm_03'   # 数据集路径
    get_cImg(path)

                只需要将没有裁剪过的人体轮廓图存放的路径填入其中, 便可以自动生成符合标准的步态轮廓图。

        回顾: 

import os
import numpy as np
from PIL import Imagedef get_cImg(path, size=64):
    '''
    剪切图片
    :param path: 输入图片路径
    :param cut_path: 剪切图片后的输出路径
    :param size: 要剪切的图片大小
    :return:
    '''
    save_path = path.replace('Fgmask', 'Cuted')
    if not os.path.exists(save_path):
        os.makedirs(save_path)

    img_list = os.listdir(path)
    start = int(img_list[0].split('.')[0])
    end = int(img_list[-1].split('.')[0])
    for id in range(start, end):
        img_name = str(id) + '.png'
        img = Image.open(os.path.join(path, img_name))
        image, flag = cut(img)
        if not flag:
            Image.fromarray(image).convert('L').resize((size, size)).save(os.path.join(save_path, img_name))
    print(path + ' is Cuted!'

def cut(image):
    '''
    通过找到人的最小最大高度与宽度把人的轮廓分割出来,、
    因为原始轮廓图为二值图,因此头顶为将二值图像列相加后,形成一列后第一个像素值不为0的索引。
    同理脚底为形成一列后最后一个像素值不为0的索引。
    人的宽度也同理。
    :param image: 需要裁剪的图片 N*M的矩阵
    :return: temp: 裁剪后的图片 size*size的矩阵。flag:是否是符合要求的图片
    '''
    image = np.array(image)

 # 找到人的最小最大高度与宽度
    height_min = (image.sum(axis=1) != 0).argmax()
    height_max = ((image.sum(axis=1) != 0).cumsum()).argmax()
    width_min = (image.sum(axis=0) != 0).argmax()
    width_max = ((image.sum(axis=0) != 0).cumsum()).argmax()
    head_top = image[height_min, :].argmax()
    # 设置切割后图片的大小,为size*size,因为人的高一般都会大于宽
    size = height_max - height_min
    temp = np.zeros((size, size))

    # 将width_max-width_min(宽)乘height_max-height_min(高,szie)的人的轮廓图,放在size*size的图片中央
    # l = (width_max-width_min)//2
    # r = width_max-width_min-l
    # 以头为中心,将width_max-width_min(宽)乘height_max-height_min(高,size)的人的轮廓图,放在size*size的图片中央
    l1 = head_top-width_min
    r1 = width_max-head_top
    # 若宽大于高,或头的左侧或右侧身子比要生成图片的一般要大。则此图片为不符合要求的图片
    flag = False
    if size <= width_max-width_min or size//2 < r1 or size//2 < l1:
        flag = True
        return temp, flag
    # centroid = np.array([(width_max+width_min)/2,(height_max+height_min)/2],dtype='int')
    temp[:, (size//2-l1):(size//2+r1)] = image[height_min:height_max, width_min:width_max]

    return temp, flag

if __name__ == "__main__":
    path = 'Package/Fgmask/tds_nm_03'   # 数据集路径
    get_cImg(path)

尾声

        截止至2022年6月份,目前最主流的步态识别框架应该就是中国人研发的OpenGait了,里面整合了顶会最好的几个步态识别网络,并且结合了github上许多优秀的项目部署方式,支持多种训练方式,尽力适用各种实验环境,值得一试!

你可能感兴趣的:(步态识别,python,算法)