前言
很多时候我们需要将两个图片进行对比,确定两个图片的相似度。一般常用的就是openCv库,这里就是使用openCv进行图片相似度对比。
依赖
org.bytedeco javacv 1.3.3 org.bytedeco javacv-platform 1.3.3
基本算法
基本算法
1、判断高度是否一致,如果不一致,需要截取到高度一致
2、截取算法
a、因为图片有通用的顶部bar和底部bar,需要先找到底部bar。
b、截取长图片的部分,然后和底部bar拼接,就完成了图片截取。
c、这里设置一个默认的宽度,然后对比,找到相同部分,就是底部bar。
相关代码
package com.test.image; import org.bytedeco.javacpp.BytePointer; import org.bytedeco.javacpp.opencv_core; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import static org.bytedeco.javacpp.opencv_core.*; import static org.bytedeco.javacpp.opencv_imgcodecs.imread; import static org.bytedeco.javacpp.opencv_imgcodecs.imwrite; import static org.bytedeco.javacpp.opencv_imgproc.*; import static org.bytedeco.javacpp.opencv_imgproc.THRESH_BINARY; public class ImageService { private static Logger Log = LoggerFactory.getLogger(ImageService.class); public static void compareImage( String targetImageUrl, String baseImageUrl ){ /** * 读取图片到数组 */ opencv_core.Mat targetImage = imread(targetImageUrl); opencv_core.Mat baseImage = imread(baseImageUrl); Log.info("read image success"); /** * 首先对比的两个图片宽度要一致,否则不能对比 */ if(targetImage.size().width()==baseImage.size().width()){ /** * 基本算法 * 1、判断高度是否一致,如果不一致,需要截取到高度一致 * 2、截取算法 * a、因为图片有通用的顶部bar和底部bar,需要先找到底部bar。 * b、截取长图片的部分,然后和底部bar拼接,就完成了图片截取。 * c、这里设置一个默认的宽度,然后对比,找到相同部分,就是底部bar。 */ if(targetImage.size().height()!=baseImage.size().height()){ if(targetImage.size().height()>baseImage.size().height()){ targetImage = dealLongImage(targetImage.clone(),baseImage.clone()); } else { baseImage = dealLongImage(baseImage.clone(),targetImage.clone()); } } /** * 进行图片差异对比 */ Mat imageDiff = compareImage(targetImage,baseImage); double nonZeroPercent = 100 * (double) countNonZero(imageDiff) / (imageDiff.size().height() * imageDiff.size().width()); /** * 展示图片,将标准图,对比图,差异图,拼接成一张大图。 * 其中差异图会用绿色标出差异的部分。 */ set3ImageTo1("", targetImage, baseImage, showDiff(imageDiff, baseImage), "xxxx.jpg" ); imageDiff.release(); baseImage.release(); targetImage.release(); } else { } } /** * 2、截取算法 * a、因为图片有通用的顶部bar和底部bar,需要先找到底部bar。 * b、截取长图片的部分,然后和底部bar拼接,就完成了图片截取。 * c、这里设置一个默认的宽度,然后对比,找到相同部分,就是底部bar。 * @return bar的高度 */ public static int interceptBarHeight( Mat longImage, Mat shortImage ){ /** * 设置的默认高度。 */ int imageSearchMaxHeight = 400; Mat subImageLong = new Mat(longImage, new Rect(0, longImage.size().height() - imageSearchMaxHeight, longImage.size().width(), imageSearchMaxHeight)); Mat subImageShort = new Mat(shortImage, new Rect(0, shortImage.size().height() - imageSearchMaxHeight, shortImage.size().width(), imageSearchMaxHeight)); opencv_core.Mat imageDiff = compareImage(subImageLong,subImageShort); for (int row = imageDiff.size().height() - 1; row > -1; row--) { for (int col = 0; col < imageDiff.size().width(); col++) { BytePointer bytePointer = imageDiff.ptr(row, col); if (bytePointer.get(0) != 0) { imageDiff.release(); return imageSearchMaxHeight-row; } } } return imageSearchMaxHeight; } /** * 这里将两张图片作为参数传入, * 获取到共同的底部之后。对长图进行截取, * 然后将顶部和底部拼接在一起就ok了。 * @param longImage * @param shortImage * @return */ public static opencv_core.Mat dealLongImage( Mat longImage, Mat shortImage ){ int diffHeight = longImage.size().height()-shortImage.size().height(); int barHeight = interceptBarHeight(longImage,shortImage); opencv_core.Mat dealedLongImage = new Mat(longImage,new Rect(0,0,longImage.size().width(),shortImage.size().height()-barHeight) ); opencv_core.Mat imageBar = new Mat(longImage,new Rect(0,longImage.size().height()-barHeight,longImage.size().width(),barHeight) ); opencv_core.Mat dealedLongImageNew = dealedLongImage.clone(); /** * 将头部和底部bar拼接在一起。 */ vconcat(dealedLongImage, imageBar, dealedLongImageNew); imageBar.release(); dealedLongImage.release(); return dealedLongImageNew; } public static opencv_core.Mat compareImage( opencv_core.Mat targetImage, opencv_core.Mat baseImage ){ opencv_core.Mat targetImageClone = targetImage.clone(); opencv_core.Mat baseImageColne = baseImage.clone(); opencv_core.Mat imgDiff1 = targetImage.clone(); opencv_core.Mat imgDiff = targetImage.clone(); /** * 首先将图片转成灰度图, */ cvtColor(targetImage, targetImageClone, COLOR_BGR2GRAY); cvtColor(baseImage, baseImageColne, COLOR_BGR2GRAY); /** * 两个矩阵相减,获得差异图。 */ subtract(targetImageClone, baseImageColne, imgDiff1); subtract(baseImageColne, targetImageClone, imgDiff); /** * 按比重进行叠加。 */ addWeighted(imgDiff, 1, imgDiff1, 1, 0, imgDiff); /** * 图片二值化,大于24的为1,小于24的为0 */ threshold(imgDiff, imgDiff, 24, 255, THRESH_BINARY); erode(imgDiff, imgDiff, new opencv_core.Mat()); dilate(imgDiff, imgDiff, new opencv_core.Mat()); return imgDiff; } private static void set3ImageTo1(String logTag, Mat imageSrc, Mat imageBaseSrc, Mat imageDest, String mergePicResult ) { if (imageSrc.size().width() == imageDest.size().width() && imageBaseSrc.size().height() == imageDest.size().height()) { Mat img = imageSrc.clone(); Mat imgBase = imageBaseSrc.clone(); Mat imgDest = imageDest.clone(); Mat imgLine = new Mat(imgBase.size().height(), 1, CV_8UC3, new Scalar(0, 0, 0, 255)); Mat largeImg2 = new Mat(); Mat largeImg3 = new Mat(); Mat largeImg4 = new Mat(); Mat largeImg5 = new Mat(); /** * 横向拼接。 */ hconcat(img, imgLine, largeImg2); hconcat(largeImg2, imgBase, largeImg3); hconcat(largeImg3, imgLine, largeImg4); hconcat(largeImg4, imgDest, largeImg5); imwrite( mergePicResult, largeImg5); img.release(); imgBase.release(); imgDest.release(); imgLine.release(); largeImg2.release(); largeImg3.release(); largeImg4.release(); largeImg5.release(); } else { Log.info(logTag+" pictures merge failed"); imwrite( mergePicResult, imageDest); } } private static Mat showDiff(Mat imgDiff, Mat imgBase) { MatVector rgbFrame = new MatVector(); Mat imgDest = imgBase.clone(); split(imgBase, rgbFrame); subtract(rgbFrame.get(2), imgDiff, rgbFrame.get(2)); subtract(rgbFrame.get(0), imgDiff, rgbFrame.get(0)); addWeighted(rgbFrame.get(1), 1, imgDiff, 1, 0, rgbFrame.get(1)); merge(rgbFrame, imgDest); return imgDest; } public static void main( String[] args ){ String targetImageUrl = "2022-03-15-11-37-35-2ouA9yi9gjsGWHDAoaZTaNe4awr0xSlohFq0gF0m.png"; String baseImageUrl = "2022-03-15-11-37-38-njH2kVzd3boX1i8q8bLCfnnIj8xTLyHhHufgs9rp.png"; compareImage(targetImageUrl,baseImageUrl); } }
到此这篇关于基于Java实现图片相似度对比的示例代码的文章就介绍到这了,更多相关Java图片相似度对比内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!