C++日历拼图的解法你了解吗

日历拼图C++解法

0.介绍

任何一个日期都可以用8块拼图拼起来。

C++日历拼图的解法你了解吗_第1张图片

如12月3日:

C++日历拼图的解法你了解吗_第2张图片

1.思路

主要的思想就是深度优先搜索。

a) 用字符串数组存8种拼图块

char a[9][5][5]={
	{{'.','.','.','.'},
	{'.','.','.','.'},
	{'.','.','.','.'},
	{'.','.','.','.'}},	
	
	{{'1','1','1','1'},
	{'1','.','.','.'},
	{'.','.','.','.'},
	{'.','.','.','.'}},	
		
	{{'2','2','2','.'},
	{'2','2','.','.'},
	{'.','.','.','.'},
	{'.','.','.','.'}},
	
	{{'3','3','.','.'},
	{'.','3','3','3'},
	{'.','.','.','.'},
	{'.','.','.','.'}},
	
	{{'4','.','.','.'},
	{'4','4','4','.'},
	{'.','.','4','.'},
	{'.','.','.','.'}},
	
	{{'5','5','5','.'},
	{'5','.','.','.'},
	{'5','.','.','.'},
	{'.','.','.','.'}},	
 
	{{'6','6','6','6'},
	{'.','6','.','.'},
	{'.','.','.','.'},
	{'.','.','.','.'}},
	
	{{'7','7','7','.'},
	{'7','7','7','.'},
	{'.','.','.','.'},
	{'.','.','.','.'}},
	
	{{'8','8','8','.'},
	{'8','.','8','.'},
	{'.','.','.','.'},
	{'.','.','.','.'}}};

b) 获得8种拼图块的8种放置方式

这里我使用旋转加翻转实现的。

[2] 最开始为第一个,然后翻转得到第二个。

[3] 再翻转回来,再顺时针90度得到第三个。

重复[2] [3] 步骤就可以得到8种放置方式。

翻转代码

也就是左右交换。

void filp(char a[5][5]){
	for(int i=0;i<4;i++)	
		for(int j=0;j<2;j++){
			swap(a[i][j],a[i][3-j]);
		}	
}

旋转代码

这里我是顺时针旋转90度。

void rot(char a[5][5]){
	char b[5][5];
	for(int i=0;i<4;i++){
		for(int j=0;j<4;j++)
			b[i][j] = a[3-j][i];	
	}
		for(int i=0;i<4;i++)
		for(int j=0;j<4;j++) a[i][j] = b[i][j];
}

c) 判断某一个位置是否可以放置对应的拼图块。

这里我们以左上角第一个非.的位置为起点,然后进行判断。

bool candown(int x,int y,int i,int j){
	int sx = -1, sy = -1;
	for(int xx=0;xx<4;xx++)
		for(int yy=0;yy<4;yy++){
			if(b[i][j][xx][yy] != '.'){
				sx = xx;
				sy = yy;
				int kx =sx,ky= sy;
				while(kx<4 && ky<4){
						int nx = x + kx-sx;
						int ny = y + ky-sy;
						//如果要覆盖
						if(b[i][j][kx][ky]!='.'){
							if(nx<0 || ny<0) return false;
							if(nx<2 && ny<=5){
								if(mp[nx][ny]!='.') return false;
							//	mp[nx][ny] = b[i][j][kx][ky];
							}
							else if(nx<=5 && nx>=2 && ny<=6){
								if(mp[nx][ny]!='.') return false;
							//	mp[nx][ny] = b[i][j][kx][ky];								
							}
							else if(nx==6 && ny<=2){
								if(mp[nx][ny]!='.') return false;
							//	mp[nx][ny] = b[i][j][kx][ky];								
							}
							else return false;
						}
						if(ky==3){
							kx++,ky=0;
						}
						else ky++;
					}
				return true;
			}
		}
	return false;
}

d) 放置拼图块

与第c 步类似。

void down(int x,int y,int i,int j){
	for(int xx=0;xx<4;xx++)
		for(int yy=0;yy<4;yy++){
			if(b[i][j][xx][yy] != '.'){
				int kx =xx,ky= yy;
				while(kx<4 && ky<4){
						int nx = x + kx-xx;
						int ny = y + ky-yy;
						if(b[i][j][kx][ky]!='.'){
							mp[nx][ny] = b[i][j][kx][ky];								
						}
						if(ky==3){
							kx++,ky=0;
						}
						else ky++;
					}
				return;
			}
		}	
}

e) 回溯放置

与 d 步类似。

void undown(int x,int y,int i,int j){
	for(int xx=0;xx<4;xx++)
		for(int yy=0;yy<4;yy++){
			if(b[i][j][xx][yy] != '.'){
								int kx =xx,ky= yy;
				while(kx<4 && ky<4){
						int nx = x + kx-xx;
						int ny = y + ky-yy;
						if(b[i][j][kx][ky]!='.'){
							mp[nx][ny] = '.';								
						}
						if(ky==3){
							kx++,ky=0;
						}
						else ky++;
					}
				return;
			}
		}	
}

f) 深度优先搜索dfs

这里我用一维代替二维坐标,然后dfs的时候求出对应的位置。

然后就是简单带回溯的搜索了。

void dfs(int id){
	int x = id/7;
	int y = id%7;
	if(x<2 && y==6){
		dfs(id+1);
	}
	if(x==6 && y==3){
	//	printf("Success!\n");
		for(int i=0;i<7;i++){
			for(int j=0;j<7;j++){
				if(mp[i][j]=='.') continue;
				putchar(mp[i][j]);
			}
			putchar('\n');
		}
		exit(0);
	}
	if(mp[x][y]!='.') dfs(id+1);
	for(int i=1;i<=8;i++){		
		if(!vis[i]){
			for(int j=1;j<=8;j++){
				if(candown(x,y,i,j)){
					down(x,y,i,j);
					vis[i] = 1;
					dfs(id+1);
					undown(x,y,i,j);
					vis[i] = 0;
				}
			}	
		}
	}
}

2.完整程序

我这里找到解就退出,如果想要找到每个解的所有情况,可以自行修改代码。即对应dfs里的exit(0) 去掉。

#include
using namespace std;
typedef long long ll;
typedef unsigned long long ull; 
const int N=1e3+5,M=2e8+5,inf=0x3f3f3f3f,mod=1e9+7;
const int hashmod[8] = {802653189,805306857,1610612781,998288353};
#define mst(a,b) memset(a,b,sizeof a)
#define db double
#define PII pair
#define PLL pair
#define x first
#define y second
#define pb emplace_back
#define SZ(a) (int)a.size()
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define per(i,a,b) for(int i=a;i>=b;--i)
#define IOS ios::sync_with_stdio(false),cin.tie(nullptr) 
void Print(int *a,int n){
	for(int i=1;i		//x=max(x,y)  x=min(x,y)
void cmx(T &x,T y){
	if(x
void cmn(T &x,T y){
	if(x>y) x=y;
}
char a[9][5][5]={
	{{'.','.','.','.'},
	{'.','.','.','.'},
	{'.','.','.','.'},
	{'.','.','.','.'}},	
	
	{{'1','1','1','1'},
	{'1','.','.','.'},
	{'.','.','.','.'},
	{'.','.','.','.'}},	
		
	{{'2','2','2','.'},
	{'2','2','.','.'},
	{'.','.','.','.'},
	{'.','.','.','.'}},
	
	{{'3','3','.','.'},
	{'.','3','3','3'},
	{'.','.','.','.'},
	{'.','.','.','.'}},
	
	{{'4','.','.','.'},
	{'4','4','4','.'},
	{'.','.','4','.'},
	{'.','.','.','.'}},
	
	{{'5','5','5','.'},
	{'5','.','.','.'},
	{'5','.','.','.'},
	{'.','.','.','.'}},	
 
	{{'6','6','6','6'},
	{'.','6','.','.'},
	{'.','.','.','.'},
	{'.','.','.','.'}},
	
	{{'7','7','7','.'},
	{'7','7','7','.'},
	{'.','.','.','.'},
	{'.','.','.','.'}},
	
	{{'8','8','8','.'},
	{'8','.','8','.'},
	{'.','.','.','.'},
	{'.','.','.','.'}}};
char b[9][9][5][5];
void filp(char a[5][5]){
	for(int i=0;i<4;i++)	
		for(int j=0;j<2;j++){
			swap(a[i][j],a[i][3-j]);
		}	
}
void pr(char a[5][5]){
	for(int i=0;i<4;i++)
	{
		for(int j=0;j<4;j++){
			putchar(a[i][j]);
		}
		putchar('\n');
	}
}
void rot(char a[5][5]){
	char b[5][5];
	for(int i=0;i<4;i++){
		for(int j=0;j<4;j++)
			b[i][j] = a[3-j][i];	
	}
		for(int i=0;i<4;i++)
		for(int j=0;j<4;j++) a[i][j] = b[i][j];
}
char mp[8][8]={
	".......",
	".......",
	".......",
	".......",
	".......",
	".......",
	".......",
};

void cp(char a[5][5],char b[5][5]){
	for(int i=0;i<4;i++){
		for(int j=0;j<4;j++)
			a[i][j] = b[i][j];
		a[i][4]='\0';
		}
}
int vis[9];
bool candown(int x,int y,int i,int j){
	int sx = -1, sy = -1;
	for(int xx=0;xx<4;xx++)
		for(int yy=0;yy<4;yy++){
			if(b[i][j][xx][yy] != '.'){
				sx = xx;
				sy = yy;
				int kx =sx,ky= sy;
				while(kx<4 && ky<4){
						int nx = x + kx-sx;
						int ny = y + ky-sy;
						//如果要覆盖
						if(b[i][j][kx][ky]!='.'){
							if(nx<0 || ny<0) return false;
							if(nx<2 && ny<=5){
								if(mp[nx][ny]!='.') return false;
							//	mp[nx][ny] = b[i][j][kx][ky];
							}
							else if(nx<=5 && nx>=2 && ny<=6){
								if(mp[nx][ny]!='.') return false;
							//	mp[nx][ny] = b[i][j][kx][ky];								
							}
							else if(nx==6 && ny<=2){
								if(mp[nx][ny]!='.') return false;
							//	mp[nx][ny] = b[i][j][kx][ky];								
							}
							else return false;
						}
						if(ky==3){
							kx++,ky=0;
						}
						else ky++;
					}
				return true;
			}
		}
	return false;
}
void down(int x,int y,int i,int j){
	for(int xx=0;xx<4;xx++)
		for(int yy=0;yy<4;yy++){
			if(b[i][j][xx][yy] != '.'){
				int kx =xx,ky= yy;
				while(kx<4 && ky<4){
						int nx = x + kx-xx;
						int ny = y + ky-yy;
						if(b[i][j][kx][ky]!='.'){
							mp[nx][ny] = b[i][j][kx][ky];								
						}
						if(ky==3){
							kx++,ky=0;
						}
						else ky++;
					}
				return;
			}
		}	
}
void undown(int x,int y,int i,int j){
	for(int xx=0;xx<4;xx++)
		for(int yy=0;yy<4;yy++){
			if(b[i][j][xx][yy] != '.'){
								int kx =xx,ky= yy;
				while(kx<4 && ky<4){
						int nx = x + kx-xx;
						int ny = y + ky-yy;
						if(b[i][j][kx][ky]!='.'){
							mp[nx][ny] = '.';								
						}
						if(ky==3){
							kx++,ky=0;
						}
						else ky++;
					}
				return;
			}
		}	
}
void dfs(int id){
	int x = id/7;
	int y = id%7;
	if(x<2 && y==6){
		dfs(id+1);
	}
	if(x==6 && y==3){
	//	printf("Success!\n");
		for(int i=0;i<7;i++){
			for(int j=0;j<7;j++){
				if(mp[i][j]=='.') continue;
				putchar(mp[i][j]);
			}
			putchar('\n');
		}
		exit(0);
	}
	if(mp[x][y]!='.') dfs(id+1);
	for(int i=1;i<=8;i++){		
		if(!vis[i]){
			for(int j=1;j<=8;j++){
				if(candown(x,y,i,j)){
					down(x,y,i,j);
					vis[i] = 1;
					dfs(id+1);
					undown(x,y,i,j);
					vis[i] = 0;
				}
			}	
		}
	}
}
int main(){
	int m,d;
	scanf("%d%d",&m,&d);
	//初始化
	mp[m>6][(m-1)%6] = '0';
	mp[((d-1)/7)+2][(d-1)%7] = '0';
	//得到每个拼图的所有情况
	for(int i=1;i<=8;i++){
			cp(b[i][1],a[i]);filp(a[i]);
			cp(b[i][2],a[i]);filp(a[i]);rot(a[i]);
			cp(b[i][3],a[i]);filp(a[i]);
			cp(b[i][4],a[i]);filp(a[i]);rot(a[i]);
			cp(b[i][5],a[i]);filp(a[i]);
			cp(b[i][6],a[i]);filp(a[i]);rot(a[i]);
			cp(b[i][7],a[i]);filp(a[i]);
			cp(b[i][8],a[i]);					
	}
	dfs(0);
	return 0;
}

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注脚本之家的更多内容!     

你可能感兴趣的:(C++日历拼图的解法你了解吗)